python类write()的实例源码

runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _epoch_log(self, file, num_epoch, train_accuracy, dev_accuracy, average_loss):
        """
        Log epoch
        :param file:
        :param num_epoch:
        :param train_accuracy:
        :param dev_accuracy:
        :param average_loss:
        :return:
        """
        with open(file, "a") as f:
            f.write("epoch: %d, train_accuracy: %f, dev_accuracy: %f, average_loss: %f\n" % (num_epoch, train_accuracy, dev_accuracy, average_loss))
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            predictions, feed_dict = self._test_model.predict(batch)
            predictions = self._session.run(predictions, feed_dict=feed_dict)

            correct += self._check_predictions(
                predictions=predictions,
                ground_truth=batch.ground_truth
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    predictions=predictions
                )

        accuracy = float(correct)/float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _epoch_log(self, file, num_epoch, train_accuracy, dev_accuracy, average_loss):
        """
        Log epoch
        :param file:
        :param num_epoch:
        :param train_accuracy:
        :param dev_accuracy:
        :param average_loss:
        :return:
        """
        with open(file, "a") as f:
            f.write("epoch: %d, train_accuracy: %f, dev_accuracy: %f, average_loss: %f\n" % (num_epoch, train_accuracy, dev_accuracy, average_loss))
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            predictions, feed_dict = self._test_model.predict(batch)
            predictions = self._session.run(predictions, feed_dict=feed_dict)

            correct += self._check_predictions(
                predictions=predictions,
                ground_truth=batch.ground_truth
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    predictions=predictions
                )

        accuracy = float(correct)/float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def log(self, file, batch, tag_predictions, segment_length_predictions):

        unfold_predictions, unfold_ground_truth = self._process_predictions(
            tag_predictions=tag_predictions,
            segment_length_predictions=segment_length_predictions,
            ground_truth=batch.ground_truth,
            ground_truth_segmentation_length=batch.ground_truth_segmentation_length,
            ground_truth_segment_length=batch.ground_truth_segment_length,
            question_length=batch.questions_length
        )

        with open(file, "a") as f:
            string = ""
            for tt, ts, pt, ps, qid, cv, table_id, unfold_p, unfold_t in zip(
                    batch.ground_truth,
                    batch.ground_truth_segment_length,
                    tag_predictions,
                    segment_length_predictions,
                    batch.questions_ids,
                    batch.cell_value_length,
                    batch.table_map_ids,
                    unfold_predictions,
                    unfold_ground_truth
            ):
                result = np.sum(np.abs(np.array(unfold_p) - np.array(unfold_t)), axis=-1)
                string += "=======================\n"
                string += ("id: " + str(qid) + "\n")
                string += ("tid: " + str(table_id) + "\n")
                string += ("max_column: " + str(len(cv)) + "\n")
                string += ("max_cell_value_per_col: " + str(len(cv[0])) + "\n")
                string += ("unfold_t: " + (', '.join([str(i) for i in unfold_t])) + "\n")
                string += ("unfold_p: " + (', '.join([str(i) for i in unfold_p])) + "\n")
                string += ("ts: " + (', '.join([str(i) for i in ts])) + "\n")
                string += ("tt: " + (', '.join([str(i) for i in tt])) + "\n")
                string += ("pt: " + (', '.join([str(i) for i in pt])) + "\n")
                string += ("ps: " + (', '.join([str(i) for i in ps])) + "\n")
                string += ("Result: " + str(result == 0) + "\n")
                # string += ("s: " + str(scores) + "\n")
            f.write(string)
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _epoch_log(self, file, num_epoch, train_accuracy, dev_accuracy, average_loss):
        """
        Log epoch
        :param file:
        :param num_epoch:
        :param train_accuracy:
        :param dev_accuracy:
        :param average_loss:
        :return:
        """
        with open(file, "a") as f:
            f.write("epoch: %d, train_accuracy: %f, dev_accuracy: %f, average_loss: %f\n" % (
            num_epoch, train_accuracy, dev_accuracy, average_loss))
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            tag_predictions, segment_length_predictions, feed_dict = self._test_model.predict(batch)
            tag_predictions, segment_length_predictions = self._session.run(
                (tag_predictions, segment_length_predictions,),
                feed_dict=feed_dict
            )

            correct += self._check_predictions(
                tag_predictions=tag_predictions,
                segment_length_predictions=segment_length_predictions,
                ground_truth=batch.ground_truth,
                ground_truth_segment_length=batch.ground_truth_segment_length,
                ground_truth_segmentation_length=batch.ground_truth_segmentation_length,
                question_length=batch.questions_length
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    tag_predictions=tag_predictions,
                    segment_length_predictions=segment_length_predictions
                )

        accuracy = float(correct) / float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def log(self, file, batch, predictions, is_detail=False):
        with open(file, "a") as f:
            string = ""
            for t, p, qid, cv, table_id in zip(batch.ground_truth, predictions, batch.questions_ids, batch.cell_value_length, batch.table_map_ids):
                result = np.sum(np.abs(np.array(p) - np.array(t)), axis=-1)
                string += "=======================\n"
                string += ("id: " + str(qid) + "\n")
                string += ("tid: " + str(table_id) + "\n")
                string += ("max_column: " + str(len(cv)) + "\n")
                string += ("max_cell_value_per_col: " + str(len(cv[0])) + "\n")
                string += ("t: " + (', '.join([str(i) for i in t])) + "\n")
                string += ("p: " + (', '.join([str(i) for i in p])) + "\n")
                string += ("Result: " + str(result == 0) + "\n")
                # string += ("s: " + str(scores) + "\n")
            f.write(string)
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _epoch_log(self, file, num_epoch, train_accuracy, dev_accuracy, average_loss):
        """
        Log epoch
        :param file:
        :param num_epoch:
        :param train_accuracy:
        :param dev_accuracy:
        :param average_loss:
        :return:
        """
        with open(file, "a") as f:
            f.write("epoch: %d, train_accuracy: %f, dev_accuracy: %f, average_loss: %f\n" % (num_epoch, train_accuracy, dev_accuracy, average_loss))
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            predictions, feed_dict = self._test_model.predict(batch)
            predictions = self._session.run(predictions, feed_dict=feed_dict)

            correct += self._check_predictions(
                predictions=predictions,
                ground_truth=batch.ground_truth
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    predictions=predictions
                )

        accuracy = float(correct)/float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def log(self, file, batch, tag_predictions, segment_length_predictions):

        unfold_predictions, unfold_ground_truth = self._process_predictions(
            tag_predictions=tag_predictions,
            segment_length_predictions=segment_length_predictions,
            ground_truth=batch.ground_truth,
            ground_truth_segmentation_length=batch.ground_truth_segmentation_length,
            ground_truth_segment_length=batch.ground_truth_segment_length,
            question_length=batch.questions_length
        )

        with open(file, "a") as f:
            string = ""
            for tt, ts, pt, ps, qid, cv, table_id, unfold_p, unfold_t in zip(
                    batch.ground_truth,
                    batch.ground_truth_segment_length,
                    tag_predictions,
                    segment_length_predictions,
                    batch.questions_ids,
                    batch.cell_value_length,
                    batch.table_map_ids,
                    unfold_predictions,
                    unfold_ground_truth
            ):
                result = np.sum(np.abs(np.array(unfold_p) - np.array(unfold_t)), axis=-1)
                string += "=======================\n"
                string += ("id: " + str(qid) + "\n")
                string += ("tid: " + str(table_id) + "\n")
                string += ("max_column: " + str(len(cv)) + "\n")
                string += ("max_cell_value_per_col: " + str(len(cv[0])) + "\n")
                string += ("unfold_t: " + (', '.join([str(i) for i in unfold_t])) + "\n")
                string += ("unfold_p: " + (', '.join([str(i) for i in unfold_p])) + "\n")
                string += ("ts: " + (', '.join([str(i) for i in ts])) + "\n")
                string += ("tt: " + (', '.join([str(i) for i in tt])) + "\n")
                string += ("pt: " + (', '.join([str(i) for i in pt])) + "\n")
                string += ("ps: " + (', '.join([str(i) for i in ps])) + "\n")
                string += ("Result: " + str(result == 0) + "\n")
                # string += ("s: " + str(scores) + "\n")
            f.write(string)
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            tag_predictions, segment_length_predictions, feed_dict = self._test_model.predict(batch)
            tag_predictions, segment_length_predictions = self._session.run(
                (tag_predictions, segment_length_predictions,),
                feed_dict=feed_dict
            )

            correct += self._check_predictions(
                tag_predictions=tag_predictions,
                segment_length_predictions=segment_length_predictions,
                ground_truth=batch.ground_truth,
                ground_truth_segment_length=batch.ground_truth_segment_length,
                ground_truth_segmentation_length=batch.ground_truth_segmentation_length,
                question_length=batch.questions_length
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    tag_predictions=tag_predictions,
                    segment_length_predictions=segment_length_predictions
                )

        accuracy = float(correct) / float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def log(self, file, batch, tag_predictions, segment_length_predictions):

        unfold_predictions, unfold_ground_truth = self._process_predictions(
            tag_predictions=tag_predictions,
            segment_length_predictions=segment_length_predictions,
            ground_truth=batch.ground_truth,
            ground_truth_segmentation_length=batch.ground_truth_segmentation_length,
            ground_truth_segment_length=batch.ground_truth_segment_length,
            question_length=batch.questions_length
        )

        with open(file, "a") as f:
            string = ""
            for tt, ts, pt, ps, qid, cv, table_id, unfold_p, unfold_t in zip(
                    batch.ground_truth,
                    batch.ground_truth_segment_length,
                    tag_predictions,
                    segment_length_predictions,
                    batch.questions_ids,
                    batch.cell_value_length,
                    batch.table_map_ids,
                    unfold_predictions,
                    unfold_ground_truth
            ):
                result = np.sum(np.abs(np.array(unfold_p) - np.array(unfold_t)), axis=-1)
                string += "=======================\n"
                string += ("id: " + str(qid) + "\n")
                string += ("tid: " + str(table_id) + "\n")
                string += ("max_column: " + str(len(cv)) + "\n")
                string += ("max_cell_value_per_col: " + str(len(cv[0])) + "\n")
                string += ("unfold_t: " + (', '.join([str(i) for i in unfold_t])) + "\n")
                string += ("unfold_p: " + (', '.join([str(i) for i in unfold_p])) + "\n")
                string += ("ts: " + (', '.join([str(i) for i in ts])) + "\n")
                string += ("tt: " + (', '.join([str(i) for i in tt])) + "\n")
                string += ("pt: " + (', '.join([str(i) for i in pt])) + "\n")
                string += ("ps: " + (', '.join([str(i) for i in ps])) + "\n")
                string += ("Result: " + str(result == 0) + "\n")
                # string += ("s: " + str(scores) + "\n")
            f.write(string)
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _epoch_log(self, file, num_epoch, train_accuracy, dev_accuracy, average_loss):
        """
        Log epoch
        :param file:
        :param num_epoch:
        :param train_accuracy:
        :param dev_accuracy:
        :param average_loss:
        :return:
        """
        with open(file, "a") as f:
            f.write("epoch: %d, train_accuracy: %f, dev_accuracy: %f, average_loss: %f\n" % (
            num_epoch, train_accuracy, dev_accuracy, average_loss))
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            tag_predictions, segment_length_predictions, feed_dict = self._test_model.predict(batch)
            tag_predictions, segment_length_predictions = self._session.run(
                (tag_predictions, segment_length_predictions,),
                feed_dict=feed_dict
            )

            correct += self._check_predictions(
                tag_predictions=tag_predictions,
                segment_length_predictions=segment_length_predictions,
                ground_truth=batch.ground_truth,
                ground_truth_segment_length=batch.ground_truth_segment_length,
                ground_truth_segmentation_length=batch.ground_truth_segmentation_length,
                question_length=batch.questions_length
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    tag_predictions=tag_predictions,
                    segment_length_predictions=segment_length_predictions
                )

        accuracy = float(correct) / float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _epoch_log(self, file, num_epoch, train_accuracy, dev_accuracy, average_loss):
        """
        Log epoch
        :param file:
        :param num_epoch:
        :param train_accuracy:
        :param dev_accuracy:
        :param average_loss:
        :return:
        """
        with open(file, "a") as f:
            f.write("epoch: %d, train_accuracy: %f, dev_accuracy: %f, average_loss: %f\n" % (num_epoch, train_accuracy, dev_accuracy, average_loss))
runtime.py 文件源码 项目:entity_binding 作者: JasperGuo 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test(self, data_iterator, is_log=False):
        tqdm.write("Testing...")
        total = 0
        correct = 0
        file = os.path.join(self._result_log_base_path, "test_" + self._curr_time + ".log")
        for i in tqdm(range(data_iterator.batch_per_epoch)):
            batch = data_iterator.get_batch()
            predictions, feed_dict = self._test_model.predict(batch)
            predictions = self._session.run(predictions, feed_dict=feed_dict)

            correct += self._check_predictions(
                predictions=predictions,
                ground_truth=batch.ground_truth
            )

            total += batch.size

            if is_log:
                self.log(
                    file=file,
                    batch=batch,
                    predictions=predictions
                )

        accuracy = float(correct)/float(total)
        tqdm.write("test_acc: %f" % accuracy)
        return accuracy
train_pose_net.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def write(self, log):
        """ Write log. """
        tqdm.write(log)
        tqdm.write(log, file=self.file)
        self.file.flush()
        self.logs.append(log)
train_pose_net.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_state_dict(self, state_dict):
        """ Loads the logger state. """
        self.logs = state_dict['logs']
        # write logs.
        tqdm.write(self.logs[-1])
        for log in self.logs:
            tqdm.write(log, file=self.file)
train_pose_net.py 文件源码 项目:DeepPoseComparison 作者: ynaka81 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _train(self, model, optimizer, train_iter, log_interval, logger, start_time):
        model.train()
        for iteration, batch in enumerate(tqdm(train_iter, desc='this epoch'), 1):
            image, pose, visibility = Variable(batch[0]), Variable(batch[1]), Variable(batch[2])
            if self.gpu:
                image, pose, visibility = image.cuda(), pose.cuda(), visibility.cuda()
            optimizer.zero_grad()
            output = model(image)
            loss = mean_squared_error(output, pose, visibility, self.use_visibility)
            loss.backward()
            optimizer.step()
            if iteration % log_interval == 0:
                log = 'elapsed_time: {0}, loss: {1}'.format(time.time() - start_time, loss.data[0])
                logger.write(log)


问题


面经


文章

微信
公众号

扫码关注公众号