def close(self, all_fds=False):
"""Closes the `IOLoop`, freeing any resources used.
If ``all_fds`` is true, all file descriptors registered on the
IOLoop will be closed (not just the ones created by the
`IOLoop` itself).
Many applications will only use a single `IOLoop` that runs for the
entire lifetime of the process. In that case closing the `IOLoop`
is not necessary since everything will be cleaned up when the
process exits. `IOLoop.close` is provided mainly for scenarios
such as unit tests, which create and destroy a large number of
``IOLoops``.
An `IOLoop` must be completely stopped before it can be closed. This
means that `IOLoop.stop()` must be called *and* `IOLoop.start()` must
be allowed to return before attempting to call `IOLoop.close()`.
Therefore the call to `close` will usually appear just after
the call to `start` rather than near the call to `stop`.
.. versionchanged:: 3.1
If the `IOLoop` implementation supports non-integer objects
for "file descriptors", those objects will have their
``close`` method when ``all_fds`` is true.
"""
raise NotImplementedError()
python类start()的实例源码
def start(self):
"""Starts the I/O loop.
The loop will run until one of the callbacks calls `stop()`, which
will make the loop stop after the current event iteration completes.
"""
raise NotImplementedError()
def _setup_logging(self):
"""The IOLoop catches and logs exceptions, so it's
important that log output be visible. However, python's
default behavior for non-root loggers (prior to python
3.2) is to print an unhelpful "no handlers could be
found" message rather than the actual log entry, so we
must explicitly configure logging if we've made it this
far without anything.
This method should be called from start() in subclasses.
"""
if not any([logging.getLogger().handlers,
logging.getLogger('tornado').handlers,
logging.getLogger('tornado.application').handlers]):
logging.basicConfig()
def add_callback(self, callback, *args, **kwargs):
if thread.get_ident() != self._thread_ident:
# If we're not on the IOLoop's thread, we need to synchronize
# with other threads, or waking logic will induce a race.
with self._callback_lock:
if self._closing:
return
list_empty = not self._callbacks
self._callbacks.append(functools.partial(
stack_context.wrap(callback), *args, **kwargs))
if list_empty:
# If we're not in the IOLoop's thread, and we added the
# first callback to an empty list, we may need to wake it
# up (it may wake up on its own, but an occasional extra
# wake is harmless). Waking up a polling IOLoop is
# relatively expensive, so we try to avoid it when we can.
self._waker.wake()
else:
if self._closing:
return
# If we're on the IOLoop's thread, we don't need the lock,
# since we don't need to wake anyone, just add the
# callback. Blindly insert into self._callbacks. This is
# safe even from signal handlers because the GIL makes
# list.append atomic. One subtlety is that if the signal
# is interrupting another thread holding the
# _callback_lock block in IOLoop.start, we may modify
# either the old or new version of self._callbacks, but
# either way will work.
self._callbacks.append(functools.partial(
stack_context.wrap(callback), *args, **kwargs))
def start(self):
"""Starts the timer."""
self._running = True
self._next_timeout = self.io_loop.time()
self._schedule_next()
def close(self, all_fds=False):
"""Closes the `IOLoop`, freeing any resources used.
If ``all_fds`` is true, all file descriptors registered on the
IOLoop will be closed (not just the ones created by the
`IOLoop` itself).
Many applications will only use a single `IOLoop` that runs for the
entire lifetime of the process. In that case closing the `IOLoop`
is not necessary since everything will be cleaned up when the
process exits. `IOLoop.close` is provided mainly for scenarios
such as unit tests, which create and destroy a large number of
``IOLoops``.
An `IOLoop` must be completely stopped before it can be closed. This
means that `IOLoop.stop()` must be called *and* `IOLoop.start()` must
be allowed to return before attempting to call `IOLoop.close()`.
Therefore the call to `close` will usually appear just after
the call to `start` rather than near the call to `stop`.
.. versionchanged:: 3.1
If the `IOLoop` implementation supports non-integer objects
for "file descriptors", those objects will have their
``close`` method when ``all_fds`` is true.
"""
raise NotImplementedError()
def start(self):
"""Starts the I/O loop.
The loop will run until one of the callbacks calls `stop()`, which
will make the loop stop after the current event iteration completes.
"""
raise NotImplementedError()
def _setup_logging(self):
"""The IOLoop catches and logs exceptions, so it's
important that log output be visible. However, python's
default behavior for non-root loggers (prior to python
3.2) is to print an unhelpful "no handlers could be
found" message rather than the actual log entry, so we
must explicitly configure logging if we've made it this
far without anything.
This method should be called from start() in subclasses.
"""
if not any([logging.getLogger().handlers,
logging.getLogger('tornado').handlers,
logging.getLogger('tornado.application').handlers]):
logging.basicConfig()
def start(self):
"""Starts the timer."""
self._running = True
self._next_timeout = self.io_loop.time()
self._schedule_next()
def main():
ioloop = tornado.ioloop.IOLoop.instance()
http_server = tornado.httpserver.HTTPServer(Windseed())
http_server.listen(8000, 'localhost')
ioloop.start()
def __init__(self, port=None, uri=None, debug=False):
"""Create http server, register callbacks and start immediatelly."""
#nprint(uri, debug=debug)
re_uri = re.compile('/' + uri )
txt_uri = re_uri.pattern
re_uri_sr = re.compile('/pathman_sr' )
txt_uri_sr = re_uri_sr.pattern
build_odl_topology(debug=debug)
logging.info('patterned to ' + repr(txt_uri))
##tuple_register2 = (txt_uri, CommandHandler2, dict(debug=debug))
tuple_register_sr = (txt_uri_sr, CommandHandlerSR, dict(debug=debug))
application = tornado.web.Application([ tuple_register_sr, # For Pathman_sr backend
#tuple_register2, # For regular Pathman backend
(r'/cisco-ctao/apps/(.*)', tornado.web.StaticFileHandler, {"path": "client"}), # For UI
#(r'/pathman/topology', dataHandler), # For BGP APP
], dict(debug=debug))
"""
http_server = tornado.httpserver.HTTPServer(application, ssl_options={
"certfile": os.path.join(data_dir, "server.crt"),
"keyfile": os.path.join(data_dir, "server.key"),
})
"""
#http_server.listen(int(port))
application.listen(int(port))
ioloop = tornado.ioloop.IOLoop.instance()
#nprint('Pathman REST API Launched on port %s' % port, debug=debug)
logging.info('Pathman REST API Launched on port %s' % port)
ioloop.start()
def start_ioloop():
logging.info("ws_rpc ioloop started")
ioloop = tornado.ioloop.IOLoop.instance()
ioloop.start()
logging.info("ws_rpc ioloop stopped")
def close(self, all_fds=False):
"""Closes the `IOLoop`, freeing any resources used.
If ``all_fds`` is true, all file descriptors registered on the
IOLoop will be closed (not just the ones created by the
`IOLoop` itself).
Many applications will only use a single `IOLoop` that runs for the
entire lifetime of the process. In that case closing the `IOLoop`
is not necessary since everything will be cleaned up when the
process exits. `IOLoop.close` is provided mainly for scenarios
such as unit tests, which create and destroy a large number of
``IOLoops``.
An `IOLoop` must be completely stopped before it can be closed. This
means that `IOLoop.stop()` must be called *and* `IOLoop.start()` must
be allowed to return before attempting to call `IOLoop.close()`.
Therefore the call to `close` will usually appear just after
the call to `start` rather than near the call to `stop`.
.. versionchanged:: 3.1
If the `IOLoop` implementation supports non-integer objects
for "file descriptors", those objects will have their
``close`` method when ``all_fds`` is true.
"""
raise NotImplementedError()
def start(self):
"""Starts the I/O loop.
The loop will run until one of the callbacks calls `stop()`, which
will make the loop stop after the current event iteration completes.
"""
raise NotImplementedError()
def _setup_logging(self):
"""The IOLoop catches and logs exceptions, so it's
important that log output be visible. However, python's
default behavior for non-root loggers (prior to python
3.2) is to print an unhelpful "no handlers could be
found" message rather than the actual log entry, so we
must explicitly configure logging if we've made it this
far without anything.
This method should be called from start() in subclasses.
"""
if not any([logging.getLogger().handlers,
logging.getLogger('tornado').handlers,
logging.getLogger('tornado.application').handlers]):
logging.basicConfig()
def start(self):
"""Starts the timer."""
self._running = True
self._next_timeout = self.io_loop.time()
self._schedule_next()
def _actually_run(self, postbind_cb):
import logging
import tornado.options
logging.getLogger().setLevel(logging.INFO)
tornado.options.enable_pretty_logging()
import tornado.web
import tornado.httpserver
import tornado.ioloop
import tornado.autoreload
import hashlib
import random
m = hashlib.md5()
m.update(str(random.random()) + str(random.random()))
secret = m.digest()
app = tornado.web.Application(self.handlers, static_path=self.static, cookie_secret=secret)
http_server = tornado.httpserver.HTTPServer(app)
http_server.listen(self.port)
logging.info("waiting for requests on http://%s:%d" % (self.hostname or "localhost", self.port))
ioloop = tornado.ioloop.IOLoop.instance()
tornado.autoreload.start(ioloop)
postbind_cb()
ioloop.start()
def close(self, all_fds=False):
"""Closes the `IOLoop`, freeing any resources used.
If ``all_fds`` is true, all file descriptors registered on the
IOLoop will be closed (not just the ones created by the
`IOLoop` itself).
Many applications will only use a single `IOLoop` that runs for the
entire lifetime of the process. In that case closing the `IOLoop`
is not necessary since everything will be cleaned up when the
process exits. `IOLoop.close` is provided mainly for scenarios
such as unit tests, which create and destroy a large number of
``IOLoops``.
An `IOLoop` must be completely stopped before it can be closed. This
means that `IOLoop.stop()` must be called *and* `IOLoop.start()` must
be allowed to return before attempting to call `IOLoop.close()`.
Therefore the call to `close` will usually appear just after
the call to `start` rather than near the call to `stop`.
.. versionchanged:: 3.1
If the `IOLoop` implementation supports non-integer objects
for "file descriptors", those objects will have their
``close`` method when ``all_fds`` is true.
"""
raise NotImplementedError()
def start(self):
"""Starts the I/O loop.
The loop will run until one of the callbacks calls `stop()`, which
will make the loop stop after the current event iteration completes.
"""
raise NotImplementedError()
def _setup_logging(self):
"""The IOLoop catches and logs exceptions, so it's
important that log output be visible. However, python's
default behavior for non-root loggers (prior to python
3.2) is to print an unhelpful "no handlers could be
found" message rather than the actual log entry, so we
must explicitly configure logging if we've made it this
far without anything.
This method should be called from start() in subclasses.
"""
if not any([logging.getLogger().handlers,
logging.getLogger('tornado').handlers,
logging.getLogger('tornado.application').handlers]):
logging.basicConfig()