python类RandomHorizontalFlip()的实例源码

saliency.py 文件源码 项目:DeepLearning_PlantDiseases 作者: MarkoArsenovic 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_labels(data_dir,resize=(224,224)):

    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomSizedCrop(max(resize)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
    }
    dsets = {x: datasets.ImageFolder(os.path.join(data_dir, 'train'), data_transforms[x])
             for x in ['train']}  
    return (dsets['train'].classes)
base_dataset.py 文件源码 项目:DeblurGAN 作者: KupynOrest 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSizeX, opt.loadSizeY]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSizeX)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
train.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def dataLoader(is_train=True, cuda=True, batch_size=64, shuffle=True):
        if is_train:
            trans = [transforms.RandomHorizontalFlip(),
                     transforms.RandomCrop(32, padding=4),
                     transforms.ToTensor(),
                     transforms.Normalize(mean=[n/255.
                        for n in [129.3, 124.1, 112.4]], std=[n/255. for n in [68.2,  65.4,  70.4]])]
            trans = transforms.Compose(trans)
            train_set = td.CIFAR100('data', train=True, transform=trans)
            size = len(train_set.train_labels)
            train_loader = torch.utils.data.DataLoader(
                            train_set, batch_size=batch_size, shuffle=shuffle)
        else:
            trans = [transforms.ToTensor(),
                     transforms.Normalize(mean=[n/255.
                        for n in [129.3, 124.1, 112.4]], std=[n/255. for n in [68.2,  65.4,  70.4]])]
            trans = transforms.Compose(trans)
            test_set = td.CIFAR100('data', train=False, transform=trans)
            size = len(test_set.test_labels)
            train_loader = torch.utils.data.DataLoader(
                            test_set, batch_size=batch_size, shuffle=shuffle)

        return train_loader, size
spatial_dataloader.py 文件源码 项目:two-stream-action-recognition 作者: jeffreyhuang1 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def train(self):
        training_set = spatial_dataset(dic=self.dic_training, root_dir=self.data_path, mode='train', transform = transforms.Compose([
                transforms.RandomCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
                ]))
        print '==> Training data :',len(training_set),'frames'
        print training_set[1][0]['img1'].size()

        train_loader = DataLoader(
            dataset=training_set, 
            batch_size=self.BATCH_SIZE,
            shuffle=True,
            num_workers=self.num_workers)
        return train_loader
engine.py 文件源码 项目:wildcat.pytorch 作者: durandtibo 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def init_learning(self, model, criterion):

        if self._state('train_transform') is None:
            normalize = transforms.Normalize(mean=model.image_normalization_mean,
                                             std=model.image_normalization_std)
            self.state['train_transform'] = transforms.Compose([
                Warp(self.state['image_size']),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])

        if self._state('val_transform') is None:
            normalize = transforms.Normalize(mean=model.image_normalization_mean,
                                             std=model.image_normalization_std)
            self.state['val_transform'] = transforms.Compose([
                Warp(self.state['image_size']),
                transforms.ToTensor(),
                normalize,
            ])

        self.state['best_score'] = 0
datasets.py 文件源码 项目:mean-teacher 作者: CuriousAI 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def imagenet():
    channel_stats = dict(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
    train_transformation = data.TransformTwice(transforms.Compose([
        transforms.RandomRotation(10),
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
        transforms.ToTensor(),
        transforms.Normalize(**channel_stats)
    ]))
    eval_transformation = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(**channel_stats)
    ])

    return {
        'train_transformation': train_transformation,
        'eval_transformation': eval_transformation,
        'datadir': 'data-local/images/ilsvrc2012/',
        'num_classes': 1000
    }
datasets.py 文件源码 项目:mean-teacher 作者: CuriousAI 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cifar10():
    channel_stats = dict(mean=[0.4914, 0.4822, 0.4465],
                         std=[0.2470,  0.2435,  0.2616])
    train_transformation = data.TransformTwice(transforms.Compose([
        data.RandomTranslateWithReflect(4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**channel_stats)
    ]))
    eval_transformation = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(**channel_stats)
    ])

    return {
        'train_transformation': train_transformation,
        'eval_transformation': eval_transformation,
        'datadir': 'data-local/images/cifar/cifar10/by-image',
        'num_classes': 10
    }
coco_caption.py 文件源码 项目:seq2seq.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def imagenet_transform(scale_size=256, input_size=224, train=True, allow_var_size=False):
    normalize = {'mean': [0.485, 0.456, 0.406],
                 'std': [0.229, 0.224, 0.225]}

    if train:
        return transforms.Compose([
            transforms.Scale(scale_size),
            transforms.RandomCrop(input_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(**normalize)
        ])
    elif allow_var_size:
        return transforms.Compose([
            transforms.Scale(scale_size),
            transforms.ToTensor(),
            transforms.Normalize(**normalize)
        ])
    else:
        return transforms.Compose([
            transforms.Scale(scale_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            transforms.Normalize(**normalize)
        ])
base_dataset.py 文件源码 项目:CycleGANwithPerceptionLoss 作者: EliasVansteenkiste 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSize)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
base_dataset.py 文件源码 项目:pytorch-CycleGAN-and-pix2pix 作者: junyanz 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSize)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
image.py 文件源码 项目:generative_models 作者: j-min 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_transform(resize_crop='resize_and_crop', flip=True,
                  loadSize=286, fineSize=256):
    transform_list = []
    if resize_crop == 'resize_and_crop':
        osize = [loadSize, loadSize]
        transform_list.append(transforms.Resize(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(fineSize))
    elif resize_crop == 'crop':
        transform_list.append(transforms.RandomCrop(fineSize))
    elif resize_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, fineSize)))
    elif resize_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, loadSize)))
        transform_list.append(transforms.RandomCrop(fineSize))

    if flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
base_dataset.py 文件源码 项目:GAN_Liveness_Detection 作者: yunfan0621 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSize)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
imsitu_loader.py 文件源码 项目:verb-attributes 作者: uwnlp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def transform(is_train=True, normalize=True):
    """
    Returns a transform object
    """
    filters = []
    filters.append(Scale(256))

    if is_train:
        filters.append(RandomCrop(224))
    else:
        filters.append(CenterCrop(224))

    if is_train:
        filters.append(RandomHorizontalFlip())

    filters.append(ToTensor())
    if normalize:
        filters.append(Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225]))
    return Compose(filters)
dataset.py 文件源码 项目:age 作者: ly015 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, crop_size = 128, y_offset = 15, flip = False):

        self.crop_size = crop_size
        self.y_offset = y_offset
        self.flip = flip

        if self.flip:
            self.post_transform = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.Scale(size = 224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                ])
        else:
            self.post_transform = transforms.Compose([
                transforms.Scale(size = 224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                ])
occlusion.py 文件源码 项目:DeepLearning_PlantDiseases 作者: MarkoArsenovic 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def load_labels(data_dir,resize=(224,224)):

    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomSizedCrop(max(resize)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
    }
    dsets = {x: datasets.ImageFolder(os.path.join(data_dir, 'train'), data_transforms[x])
             for x in ['train']}  
    return (dsets['train'].classes)
train.py 文件源码 项目:DeepLearning_PlantDiseases 作者: MarkoArsenovic 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_data(resize):

    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomSizedCrop(max(resize)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            #Higher scale-up for inception
            transforms.Scale(int(max(resize)/224*256)),
            transforms.CenterCrop(max(resize)),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    data_dir = 'PlantVillage'
    dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
             for x in ['train', 'val']}
    dset_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=batch_size,
                                                   shuffle=True)
                    for x in ['train', 'val']}
    dset_sizes = {x: len(dsets[x]) for x in ['train', 'val']}
    dset_classes = dsets['train'].classes

    return dset_loaders['train'], dset_loaders['val']
preprocess.py 文件源码 项目:convNet.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def pad_random_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    padding = int((scale_size - input_size) / 2)
    return transforms.Compose([
        transforms.RandomCrop(input_size, padding=padding),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ])
preprocess.py 文件源码 项目:convNet.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def inception_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomSizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize)
    ])
preprocess.py 文件源码 项目:convNet.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def inception_color_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomSizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        ColorJitter(
            brightness=0.4,
            contrast=0.4,
            saturation=0.4,
        ),
        Lighting(0.1, __imagenet_pca['eigval'], __imagenet_pca['eigvec']),
        transforms.Normalize(**normalize)
    ])
cifar10.py 文件源码 项目:inferno 作者: inferno-pytorch 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_cifar10_loaders(root_directory, train_batch_size=128, test_batch_size=100,
                        download=False):
    # Data preparation for CIFAR10. Borrowed from
    # https://github.com/kuangliu/pytorch-cifar/blob/master/main.py
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    trainset = torchvision.datasets.CIFAR10(root=os.path.join(root_directory, 'data'),
                                            train=True, download=download,
                                            transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=train_batch_size,
                                              shuffle=True, num_workers=2)

    testset = torchvision.datasets.CIFAR10(root=os.path.join(root_directory, 'data'),
                                           train=False, download=download,
                                           transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size,
                                             shuffle=False, num_workers=2)
    return trainloader, testloader
preprocess.py 文件源码 项目:bigBatch 作者: eladhoffer 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def scale_random_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    t_list = [
        transforms.RandomCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ]
    if scale_size != input_size:
        t_list = [transforms.Scale(scale_size)] + t_list

    return transforms.Compose(t_list)
preprocess.py 文件源码 项目:bigBatch 作者: eladhoffer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def pad_random_crop(input_size, scale_size=None, normalize=__imagenet_stats, fill=0):
    padding = int((scale_size - input_size) / 2)
    return transforms.Compose([
        transforms.Pad(padding, fill=fill),
        transforms.RandomCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ])
preprocess.py 文件源码 项目:bigBatch 作者: eladhoffer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def inception_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomSizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize)
    ])
preprocess.py 文件源码 项目:bigBatch 作者: eladhoffer 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def inception_color_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomSizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        ColorJitter(
            brightness=0.4,
            contrast=0.4,
            saturation=0.4,
        ),
        Lighting(0.1, __imagenet_pca['eigval'], __imagenet_pca['eigvec']),
        transforms.Normalize(**normalize)
    ])
minc.py 文件源码 项目:PyTorch-Encoding 作者: zhanghang1989 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, args):
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
        transform_train = transforms.Compose([
            transforms.Resize(256),
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(0.4,0.4,0.4),
            transforms.ToTensor(),
            Lighting(0.1, _imagenet_pca['eigval'], _imagenet_pca['eigvec']),
            normalize,
        ])
        transform_test = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])

        trainset = MINCDataloder(root=os.path.expanduser('~/data/minc-2500/'), 
            train=True, transform=transform_train)
        testset = MINCDataloder(root=os.path.expanduser('~/data/minc-2500/'), 
            train=False, transform=transform_test)

        kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}
        trainloader = torch.utils.data.DataLoader(trainset, batch_size=
            args.batch_size, shuffle=True, **kwargs)
        testloader = torch.utils.data.DataLoader(testset, batch_size=
            args.test_batch_size, shuffle=False, **kwargs)
        self.trainloader = trainloader 
        self.testloader = testloader
transform_rules.py 文件源码 项目:kaggle-nips-adversarial-attacks 作者: EdwardTyantov 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def imagenet_like():

    crop_size = 299#224

    train_transformations = transforms.Compose([
        transforms.RandomSizedCrop(crop_size),
        transforms.RandomHorizontalFlip(),
        lambda img: img if random.random() < 0.5 else img.transpose(Image.FLIP_TOP_BOTTOM),
        transforms.ToTensor(),
        ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
        normalize,
    ])

    val_transformations = transforms.Compose([
        transforms.CenterCrop(crop_size),
        transforms.ToTensor(),
        normalize,
    ])

    test_transformation = transforms.Compose([
        #TenCropPick(224),
        SpatialPick(),
        #transforms.CenterCrop(crop_size),
        transforms.ToTensor(),
        normalize,
    ])

    return {'train': train_transformations, 'val': val_transformations, 'test': test_transformation}
misc.py 文件源码 项目:CBEGAN 作者: taey16 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def getLoader(datasetName, dataroot, originalSize, imageSize, batchSize=64, workers=4,
              mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), split='train', shuffle=True, seed=None):

  #import pdb; pdb.set_trace()
  from datasets.folder import ImageFolder as commonDataset
  import torchvision.transforms as transforms

  if split == 'train':
    dataset = commonDataset(root=dataroot,
                            transform=transforms.Compose([
                              transforms.Scale(originalSize),
                              transforms.RandomCrop(imageSize),
                              transforms.RandomHorizontalFlip(),
                              transforms.ToTensor(),
                              transforms.Normalize(mean, std),
                            ]),
                            seed=seed)
  else:
    dataset = commonDataset(root=dataroot,
                            transform=transforms.Compose([
                              transforms.Scale(originalSize),
                              transforms.CenterCrop(imageSize),
                              transforms.ToTensor(),
                              transforms.Normalize(mean, std),
                             ]),
                             seed=seed)

  assert dataset
  dataloader = torch.utils.data.DataLoader(dataset, 
                                           batch_size=batchSize, 
                                           shuffle=shuffle, 
                                           num_workers=int(workers))
  return dataloader
dataset.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get(batch_size, data_root='/mnt/local0/public_dataset/pytorch/', train=True, val=True, **kwargs):
    data_root = os.path.expanduser(os.path.join(data_root, 'stl10-data'))
    num_workers = kwargs.setdefault('num_workers', 1)
    kwargs.pop('input_size', None)
    print("Building STL10 data loader with {} workers".format(num_workers))
    ds = []
    if train:
        train_loader = torch.utils.data.DataLoader(
            datasets.STL10(
                root=data_root, split='train', download=True,
                transform=transforms.Compose([
                    transforms.Pad(4),
                    transforms.RandomCrop(96),
                    transforms.RandomHorizontalFlip(),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                ])),
            batch_size=batch_size, shuffle=True, **kwargs)
        ds.append(train_loader)

    if val:
        test_loader = torch.utils.data.DataLoader(
            datasets.STL10(
                root=data_root, split='test', download=True,
                transform=transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                ])),
            batch_size=batch_size, shuffle=False, **kwargs)
        ds.append(test_loader)

    ds = ds[0] if len(ds) == 1 else ds
    return ds
dataset.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get10(batch_size, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs):
    data_root = os.path.expanduser(os.path.join(data_root, 'cifar10-data'))
    num_workers = kwargs.setdefault('num_workers', 1)
    kwargs.pop('input_size', None)
    print("Building CIFAR-10 data loader with {} workers".format(num_workers))
    ds = []
    if train:
        train_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(
                root=data_root, train=True, download=True,
                transform=transforms.Compose([
                    transforms.Pad(4),
                    transforms.RandomCrop(32),
                    transforms.RandomHorizontalFlip(),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                ])),
            batch_size=batch_size, shuffle=True, **kwargs)
        ds.append(train_loader)
    if val:
        test_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(
                root=data_root, train=False, download=True,
                transform=transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                ])),
            batch_size=batch_size, shuffle=False, **kwargs)
        ds.append(test_loader)
    ds = ds[0] if len(ds) == 1 else ds
    return ds
dataset.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get100(batch_size, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs):
    data_root = os.path.expanduser(os.path.join(data_root, 'cifar100-data'))
    num_workers = kwargs.setdefault('num_workers', 1)
    kwargs.pop('input_size', None)
    print("Building CIFAR-100 data loader with {} workers".format(num_workers))
    ds = []
    if train:
        train_loader = torch.utils.data.DataLoader(
            datasets.CIFAR100(
                root=data_root, train=True, download=True,
                transform=transforms.Compose([
                    transforms.Pad(4),
                    transforms.RandomCrop(32),
                    transforms.RandomHorizontalFlip(),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                ])),
            batch_size=batch_size, shuffle=True, **kwargs)
        ds.append(train_loader)

    if val:
        test_loader = torch.utils.data.DataLoader(
            datasets.CIFAR100(
                root=data_root, train=False, download=True,
                transform=transforms.Compose([
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                ])),
            batch_size=batch_size, shuffle=False, **kwargs)
        ds.append(test_loader)
    ds = ds[0] if len(ds) == 1 else ds
    return ds


问题


面经


文章

微信
公众号

扫码关注公众号