python类Scale()的实例源码

unaligned_data_loader.py 文件源码 项目:DistanceGAN 作者: sagiebenaim 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def initialize(self, opt):
        BaseDataLoader.initialize(self, opt)
        transformations = [transforms.Scale(opt.loadSize),
                           transforms.RandomCrop(opt.fineSize),
                           transforms.ToTensor(),
                           transforms.Normalize((0.5, 0.5, 0.5),
                                                (0.5, 0.5, 0.5))]
        transform = transforms.Compose(transformations)

        # Dataset A
        dataset_A = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'A',
                                transform=transform, return_paths=True)
        data_loader_A = torch.utils.data.DataLoader(
            dataset_A,
            batch_size=self.opt.batchSize,
            shuffle=not self.opt.serial_batches,
            num_workers=int(self.opt.nThreads))

        # Dataset B
        dataset_B = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'B',
                                transform=transform, return_paths=True)
        data_loader_B = torch.utils.data.DataLoader(
            dataset_B,
            batch_size=self.opt.batchSize,
            shuffle=not self.opt.serial_batches,
            num_workers=int(self.opt.nThreads))
        self.dataset_A = dataset_A
        self.dataset_B = dataset_B
        flip = opt.isTrain and not opt.no_flip
        self.paired_data = PairedData(data_loader_A, data_loader_B, 
                                      self.opt.max_dataset_size, flip)
aligned_data_loader.py 文件源码 项目:DistanceGAN 作者: sagiebenaim 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def initialize(self, opt):
        BaseDataLoader.initialize(self, opt)
        self.fineSize = opt.fineSize

        transformations = [
            # TODO: Scale
            transforms.Scale(opt.loadSize),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5),
                                 (0.5, 0.5, 0.5))]
        transform = transforms.Compose(transformations)

        # Dataset A
        dataset = ImageFolder(root=opt.dataroot + '/' + opt.phase,
                              transform=transform, return_paths=True)
        data_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=self.opt.batchSize,
            shuffle=not self.opt.serial_batches,
            num_workers=int(self.opt.nThreads))

        self.dataset = dataset

        flip = opt.isTrain and not opt.no_flip
        self.paired_data = PairedData(data_loader, opt.fineSize, 
                                      opt.max_dataset_size, flip)
img_loader.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def toTensor(self, img):
        encode = transforms.Compose([transforms.Scale(self.img_size),
               transforms.ToTensor(),
               transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])]),
               transforms.Normalize(mean=[0.40760392, 0.45795686, 0.48501961], std=[1,1,1]),
               transforms.Lambda(lambda x: x.mul_(255)),
            ])

        return encode(Image.open(img))
data_loader.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, path, img_size, batch_size, is_cuda):
        self._img_files = os.listdir(path)
        self._path = path
        self._is_cuda = is_cuda
        self._step = 0
        self._batch_size = batch_size
        self.sents_size = len(self._img_files)
        self._stop_step = self.sents_size // batch_size

        self._encode = transforms.Compose([
                            transforms.Scale(img_size),
                            transforms.RandomCrop(img_size),
                            transforms.ToTensor()
                        ])
data_loader.py 文件源码 项目:pytorch-tutorial 作者: yunjey 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_loader(image_path, image_size, batch_size, num_workers=2):
    """Builds and returns Dataloader."""

    transform = transforms.Compose([
                    transforms.Scale(image_size),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    dataset = ImageFolder(image_path, transform)
    data_loader = data.DataLoader(dataset=dataset,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=num_workers)
    return data_loader
run_placesCNN_unified.py 文件源码 项目:places365 作者: CSAILVision 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def returnTF():
# load the image transformer
    tf = trn.Compose([
        trn.Scale((224,224)),
        trn.ToTensor(),
        trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    return tf
preprocess.py 文件源码 项目:bigBatch 作者: eladhoffer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def scale_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    t_list = [
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ]
    if scale_size != input_size:
        t_list = [transforms.Scale(scale_size)] + t_list

    return transforms.Compose(t_list)
preprocess.py 文件源码 项目:bigBatch 作者: eladhoffer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def scale_random_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    t_list = [
        transforms.RandomCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ]
    if scale_size != input_size:
        t_list = [transforms.Scale(scale_size)] + t_list

    return transforms.Compose(t_list)
dataset.py 文件源码 项目:pytorch-nips2017-attack-example 作者: rwightman 项目源码 文件源码 阅读 63 收藏 0 点赞 0 评论 0
def default_inception_transform(img_size):
    tf = transforms.Compose([
        transforms.Scale(img_size),
        transforms.CenterCrop(img_size),
        transforms.ToTensor(),
        LeNormalize(),
    ])
    return tf
coco.py 文件源码 项目:vqa.pytorch 作者: Cadene 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def default_transform(size):
    transform = transforms.Compose([
        transforms.Scale(size),
        transforms.CenterCrop(size),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], # resnet imagnet
                             std=[0.229, 0.224, 0.225])
    ])
    return transform
model_utils.py 文件源码 项目:SuperResolution 作者: bguisard 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def img_transform(crop_size, upscale_factor=1):
    return transforms.Compose([
        transforms.Scale(crop_size // upscale_factor),
        transforms.CenterCrop(crop_size // upscale_factor),
        transforms.ToTensor()])
unaligned_data_loader.py 文件源码 项目:pytorch_cycle_gan 作者: jinfagang 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def initialize(self, opt):
        BaseDataLoader.initialize(self, opt)
        transformations = [transforms.Scale(opt.loadSize),
                           transforms.RandomCrop(opt.fineSize),
                           transforms.ToTensor(),
                           transforms.Normalize((0.5, 0.5, 0.5),
                                                (0.5, 0.5, 0.5))]
        transform = transforms.Compose(transformations)

        # Dataset A
        dataset_A = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'A',
                                transform=transform, return_paths=True)
        data_loader_A = torch.utils.data.DataLoader(
            dataset_A,
            batch_size=self.opt.batchSize,
            shuffle=not self.opt.serial_batches,
            num_workers=int(self.opt.nThreads))

        # Dataset B
        dataset_B = ImageFolder(root=opt.dataroot + '/' + opt.phase + 'B',
                                transform=transform, return_paths=True)
        data_loader_B = torch.utils.data.DataLoader(
            dataset_B,
            batch_size=self.opt.batchSize,
            shuffle=not self.opt.serial_batches,
            num_workers=int(self.opt.nThreads))
        self.dataset_A = dataset_A
        self.dataset_B = dataset_B
        flip = opt.isTrain and not opt.no_flip
        self.paired_data = PairedData(data_loader_A, data_loader_B,
                                      self.opt.max_dataset_size, flip)
aligned_data_loader.py 文件源码 项目:pytorch_cycle_gan 作者: jinfagang 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def initialize(self, opt):
        BaseDataLoader.initialize(self, opt)
        self.fineSize = opt.fineSize

        transformations = [
            # TODO: Scale
            transforms.Scale(opt.loadSize),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5),
                                 (0.5, 0.5, 0.5))]
        transform = transforms.Compose(transformations)

        # Dataset A
        dataset = ImageFolder(root=opt.dataroot + '/' + opt.phase,
                              transform=transform, return_paths=True)
        data_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=self.opt.batchSize,
            shuffle=not self.opt.serial_batches,
            num_workers=int(self.opt.nThreads))

        self.dataset = dataset

        flip = opt.isTrain and not opt.no_flip
        self.paired_data = PairedData(data_loader, opt.fineSize, 
                                      opt.max_dataset_size, flip)
data_utilities.py 文件源码 项目:generative_zoo 作者: DL-IT 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def MNIST_loader(root, image_size, normalize=True):
    """
        Function to load torchvision dataset object based on just image size
        Args:
            root        = If your dataset is downloaded and ready to use, mention the location of this folder. Else, the dataset will be downloaded to this location
            image_size  = Size of every image
            normalize   = Requirement to normalize the image. Default is true
    """
    transformations = [transforms.Scale(image_size), transforms.ToTensor()]
    if normalize == True:
        transformations.append(transforms.Normalize((0.5, ), (0.5, )))
    mnist_data  = dset.MNIST(root=root, download=True, transform=transforms.Compose(transformations))
    return mnist_data
data_utilities.py 文件源码 项目:generative_zoo 作者: DL-IT 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def CIFAR10_loader(root, image_size, normalize=True):
    """
        Function to load torchvision dataset object based on just image size
        Args:
            root        = If your dataset is downloaded and ready to use, mention the location of this folder. Else, the dataset will be downloaded to this location
            image_size  = Size of every image
            normalize   = Requirement to normalize the image. Default is true
    """
    transformations = [transforms.Scale(image_size), transforms.ToTensor()]
    if normalize == True:
        transformations.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)))
    cifar10_data    = dset.CIFAR10(root=root, download=True, transform=transforms.Compose(transformations))
    return cifar10_data
data_utilities.py 文件源码 项目:generative_zoo 作者: DL-IT 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def CUB200_2010_loader(root, image_size, normalize=True):
    """
        Function to load torchvision dataset object based on just image size
        Args:
            root        = If your dataset is downloaded and ready to use, mention the location of this folder. Else, the dataset will be downloaded to this location
            image_size  = Size of every image
            normalize   = Requirement to normalize the image. Default is true
    """
    transformations = [transforms.Scale(image_size), transforms.ToTensor()]
    if normalize == True:
        transformations.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)))
    cub200_2010_data    = CUB2002010(root=root, download=True, transform=transforms.Compose(transformations))
    return cub200_2010_data
data_utilities.py 文件源码 项目:generative_zoo 作者: DL-IT 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def FASHIONMNIST_loader(root, image_size, normalize=True):
    """
        Function to load torchvision dataset object based on just image size
        Args:
            root        = If your dataset is downloaded and ready to use, mention the location of this folder. Else, the dataset will be downloaded to this location
            image_size  = Size of every image
            normalize   = Requirement to normalize the image. Default is true
    """
    transformations = [transforms.Scale(image_size), transforms.ToTensor()]
    if normalize == True:
        transformations.append(transforms.Normalize((0.5, ), (0.5, )))      
    fash_mnist_data = dset.FashionMNIST(root=root, download=True, transform=transforms.Compose(transformations))
    return fash_mnist_data
calculate_inception_scores.py 文件源码 项目:gan-error-avoidance 作者: aleju 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, opt):
        transform_list = []

        if (opt.crop_height > 0) and (opt.crop_width > 0):
            transform_list.append(transforms.CenterCrop(opt.crop_height, crop_width))
        elif opt.crop_size > 0:
            transform_list.append(transforms.CenterCrop(opt.crop_size))

        transform_list.append(transforms.Scale(opt.image_size))
        transform_list.append(transforms.CenterCrop(opt.image_size))

        transform_list.append(transforms.ToTensor())

        if opt.dataset == 'cifar10':
            dataset1 = datasets.CIFAR10(root = opt.dataroot, download = True,
                transform = transforms.Compose(transform_list))
            dataset2 = datasets.CIFAR10(root = opt.dataroot, train = False,
                transform = transforms.Compose(transform_list))
            def get_data(k):
                if k < len(dataset1):
                    return dataset1[k][0]
                else:
                    return dataset2[k - len(dataset1)][0]
        else:
            if opt.dataset in ['imagenet', 'folder', 'lfw']:
                dataset = datasets.ImageFolder(root = opt.dataroot,
                    transform = transforms.Compose(transform_list))
            elif opt.dataset == 'lsun':
                dataset = datasets.LSUN(db_path = opt.dataroot, classes = [opt.lsun_class + '_train'],
                    transform = transforms.Compose(transform_list))
            def get_data(k):
                return dataset[k][0]

        data_index = torch.load(os.path.join(opt.dataroot, 'data_index.pt'))
        train_index = data_index['train']

        self.opt = opt
        self.get_data = get_data
        self.train_index = data_index['train']
        self.counter = 0
dataset.py 文件源码 项目:pytorch-reverse-gan 作者: yxlao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_dataloader(opt):
    if opt.dataset in ['imagenet', 'folder', 'lfw']:
        # folder dataset
        dataset = dset.ImageFolder(root=opt.dataroot,
                                   transform=transforms.Compose([
                                       transforms.Scale(opt.imageScaleSize),
                                       transforms.CenterCrop(opt.imageSize),
                                       transforms.ToTensor(),
                                       transforms.Normalize((0.5, 0.5, 0.5),
                                                            (0.5, 0.5, 0.5)),
                                   ]))
    elif opt.dataset == 'lsun':
        dataset = dset.LSUN(db_path=opt.dataroot, classes=['bedroom_train'],
                            transform=transforms.Compose([
                                transforms.Scale(opt.imageScaleSize),
                                transforms.CenterCrop(opt.imageSize),
                                transforms.ToTensor(),
                                transforms.Normalize((0.5, 0.5, 0.5),
                                                     (0.5, 0.5, 0.5)),
                            ]))
    elif opt.dataset == 'cifar10':
        dataset = dset.CIFAR10(root=opt.dataroot, download=True,
                               transform=transforms.Compose([
                                   transforms.Scale(opt.imageSize),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5),
                                                        (0.5, 0.5, 0.5)),
                               ])
                               )
    assert dataset
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size,
                                             shuffle=True,
                                             num_workers=int(opt.workers))
    return dataloader
imagenet.py 文件源码 项目:nn_tools 作者: hahnyuan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def Imagenet_LMDB_generate(imagenet_dir, output_dir, make_val=False, make_train=False):
    # the imagenet_dir should have direction named 'train' or 'val',with 1000 folders of raw jpeg photos
    train_name = 'imagenet_train_lmdb'
    val_name = 'imagenet_val_lmdb'

    def target_trans(target):
        return target

    if make_val:
        val_lmdb=lmdb_datasets.LMDB_generator(osp.join(output_dir,val_name))
        def trans_val_data(dir):
            tensor = transforms.Compose([
                transforms.Scale(256),
                transforms.CenterCrop(224),
                transforms.ToTensor()
            ])(dir)
            tensor=(tensor.numpy()*255).astype(np.uint8)
            return tensor

        val = datasets.ImageFolder(osp.join(imagenet_dir,'val'), trans_val_data,target_trans)
        val_lmdb.write_classification_lmdb(val, num_per_dataset=DATASET_SIZE)
    if make_train:
        train_lmdb = lmdb_datasets.LMDB_generator(osp.join(output_dir, train_name))
        def trans_train_data(dir):
            tensor = transforms.Compose([
                transforms.Scale(256),
                transforms.ToTensor()
            ])(dir)
            tensor=(tensor.numpy()*255).astype(np.uint8)
            return tensor

        train = datasets.ImageFolder(osp.join(imagenet_dir, 'train'), trans_train_data, target_trans)
        train.imgs=np.random.permutation(train.imgs)

        train_lmdb.write_classification_lmdb(train, num_per_dataset=DATASET_SIZE, write_shape=True)


问题


面经


文章

微信
公众号

扫码关注公众号