python类Scale()的实例源码

greyData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.9, 1.) * area
            aspect_ratio = random.uniform(7. / 8, 8. / 7)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))
base_dataset.py 文件源码 项目:DeblurGAN 作者: KupynOrest 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSizeX, opt.loadSizeY]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSizeX)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
data_loader.py 文件源码 项目:mnist-svhn-transfer 作者: yunjey 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_loader(config):
    """Builds and returns Dataloader for MNIST and SVHN dataset."""

    transform = transforms.Compose([
                    transforms.Scale(config.image_size),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    svhn = datasets.SVHN(root=config.svhn_path, download=True, transform=transform)
    mnist = datasets.MNIST(root=config.mnist_path, download=True, transform=transform)

    svhn_loader = torch.utils.data.DataLoader(dataset=svhn,
                                              batch_size=config.batch_size,
                                              shuffle=True,
                                              num_workers=config.num_workers)

    mnist_loader = torch.utils.data.DataLoader(dataset=mnist,
                                               batch_size=config.batch_size,
                                               shuffle=True,
                                               num_workers=config.num_workers)
    return svhn_loader, mnist_loader
nvData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.9, 1.) * area
            aspect_ratio = random.uniform(7. / 8, 8. / 7)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))
sqData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.70, 0.98) * area
            aspect_ratio = random.uniform(5. / 8, 8. / 5)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))
opData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.70, 0.98) * area
            aspect_ratio = random.uniform(5. / 8, 8. / 5)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))
proData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.9, 1.) * area
            aspect_ratio = random.uniform(7. / 8, 8. / 7)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))
test_preprocessor.py 文件源码 项目:open-reid 作者: Cysu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_getitem(self):
        import torchvision.transforms as t
        from reid.datasets.viper import VIPeR
        from reid.utils.data.preprocessor import Preprocessor

        root, split_id, num_val = '/tmp/open-reid/viper', 0, 100
        dataset = VIPeR(root, split_id=split_id, num_val=num_val, download=True)

        preproc = Preprocessor(dataset.train, root=dataset.images_dir,
                               transform=t.Compose([
                                   t.Scale(256),
                                   t.CenterCrop(224),
                                   t.ToTensor(),
                                   t.Normalize(mean=[0.485, 0.456, 0.406],
                                               std=[0.229, 0.224, 0.225])
                               ]))
        self.assertEquals(len(preproc), len(dataset.train))
        img, pid, camid = preproc[0]
        self.assertEquals(img.size(), (3, 224, 224))
main.py 文件源码 项目:SimGAN_pytorch 作者: AlexHex7 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_data(self):
        print('=' * 50)
        print('Loading data...')
        transform = transforms.Compose([
            transforms.ImageOps.grayscale,
            transforms.Scale((cfg.img_width, cfg.img_height)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

        syn_train_folder = torchvision.datasets.ImageFolder(root=cfg.syn_path, transform=transform)
        # print(syn_train_folder)
        self.syn_train_loader = Data.DataLoader(syn_train_folder, batch_size=cfg.batch_size, shuffle=True,
                                                pin_memory=True)
        print('syn_train_batch %d' % len(self.syn_train_loader))

        real_folder = torchvision.datasets.ImageFolder(root=cfg.real_path, transform=transform)
        # real_folder.imgs = real_folder.imgs[:2000]
        self.real_loader = Data.DataLoader(real_folder, batch_size=cfg.batch_size, shuffle=True,
                                           pin_memory=True)
        print('real_batch %d' % len(self.real_loader))
spatial_dataloader.py 文件源码 项目:two-stream-action-recognition 作者: jeffreyhuang1 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def validate(self):
        validation_set = spatial_dataset(dic=self.dic_testing, root_dir=self.data_path, mode='val', transform = transforms.Compose([
                transforms.Scale([224,224]),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
                ]))

        print '==> Validation data :',len(validation_set),'frames'
        print validation_set[1][1].size()

        val_loader = DataLoader(
            dataset=validation_set, 
            batch_size=self.BATCH_SIZE, 
            shuffle=False,
            num_workers=self.num_workers)
        return val_loader
motion_dataloader.py 文件源码 项目:two-stream-action-recognition 作者: jeffreyhuang1 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def train(self):
        training_set = motion_dataset(dic=self.dic_video_train, in_channel=self.in_channel, root_dir=self.data_path,
            mode='train',
            transform = transforms.Compose([
            transforms.Scale([224,224]),
            transforms.ToTensor(),
            ]))
        print '==> Training data :',len(training_set),' videos',training_set[1][0].size()

        train_loader = DataLoader(
            dataset=training_set, 
            batch_size=self.BATCH_SIZE,
            shuffle=True,
            num_workers=self.num_workers,
            pin_memory=True
            )

        return train_loader
motion_dataloader.py 文件源码 项目:two-stream-action-recognition 作者: jeffreyhuang1 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def val(self):
        validation_set = motion_dataset(dic= self.dic_test_idx, in_channel=self.in_channel, root_dir=self.data_path ,
            mode ='val',
            transform = transforms.Compose([
            transforms.Scale([224,224]),
            transforms.ToTensor(),
            ]))
        print '==> Validation data :',len(validation_set),' frames',validation_set[1][1].size()
        #print validation_set[1]

        val_loader = DataLoader(
            dataset=validation_set, 
            batch_size=self.BATCH_SIZE, 
            shuffle=False,
            num_workers=self.num_workers)

        return val_loader
coco_caption.py 文件源码 项目:seq2seq.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def imagenet_transform(scale_size=256, input_size=224, train=True, allow_var_size=False):
    normalize = {'mean': [0.485, 0.456, 0.406],
                 'std': [0.229, 0.224, 0.225]}

    if train:
        return transforms.Compose([
            transforms.Scale(scale_size),
            transforms.RandomCrop(input_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(**normalize)
        ])
    elif allow_var_size:
        return transforms.Compose([
            transforms.Scale(scale_size),
            transforms.ToTensor(),
            transforms.Normalize(**normalize)
        ])
    else:
        return transforms.Compose([
            transforms.Scale(scale_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            transforms.Normalize(**normalize)
        ])
base_dataset.py 文件源码 项目:CycleGANwithPerceptionLoss 作者: EliasVansteenkiste 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSize)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
unaligned_data_loader.py 文件源码 项目:pytorch_cycle_gan 作者: jinfagang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_image_for_prediction(opt, image_path):
    """
    load image for prediction, pre process as the same of train, and also return a dict
    :param opt:
    :param image_path:
    :return:
    """
    image = Image.open(image_path)
    transformations = transforms.Compose([transforms.Scale(opt.loadSize),
                                          transforms.RandomCrop(opt.fineSize),
                                          transforms.ToTensor(),
                                          transforms.Normalize((0.5, 0.5, 0.5),
                                                               (0.5, 0.5, 0.5))])
    image_tensor = transformations(image).float()
    image_tensor.unsqueeze_(0)
    return {'A': image_tensor, 'A_paths': image_path,
            'B': image_tensor, 'B_paths': image_path}
data_utilities.py 文件源码 项目:generative_zoo 作者: DL-IT 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def LSUN_loader(root, image_size, classes=['bedroom'], normalize=True):
    """
        Function to load torchvision dataset object based on just image size
        Args:
            root        = If your dataset is downloaded and ready to use, mention the location of this folder. Else, the dataset will be downloaded to this location
            image_size  = Size of every image
            classes     = Default class is 'bedroom'. Other available classes are:
                        'bridge', 'church_outdoor', 'classroom', 'conference_room', 'dining_room', 'kitchen', 'living_room', 'restaurant', 'tower'
            normalize   = Requirement to normalize the image. Default is true
    """
    transformations = [transforms.Scale(image_size), transforms.CenterCrop(image_size), transforms.ToTensor()]
    if normalize == True:
        transformations.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)))
    for c in classes:
        c   = c + '_train'
    lsun_data   = dset.LSUN(db_path=root, classes=classes, transform=transforms.Compose(transformations))
    return lsun_data
base_dataset.py 文件源码 项目:pytorch-CycleGAN-and-pix2pix 作者: junyanz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSize)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
base_dataset.py 文件源码 项目:GAN_Liveness_Detection 作者: yunfan0621 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_transform(opt):
    transform_list = []
    if opt.resize_or_crop == 'resize_and_crop':
        osize = [opt.loadSize, opt.loadSize]
        transform_list.append(transforms.Scale(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'crop':
        transform_list.append(transforms.RandomCrop(opt.fineSize))
    elif opt.resize_or_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.fineSize)))
    elif opt.resize_or_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, opt.loadSize)))
        transform_list.append(transforms.RandomCrop(opt.fineSize))

    if opt.isTrain and not opt.no_flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
imsitu_loader.py 文件源码 项目:verb-attributes 作者: uwnlp 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def transform(is_train=True, normalize=True):
    """
    Returns a transform object
    """
    filters = []
    filters.append(Scale(256))

    if is_train:
        filters.append(RandomCrop(224))
    else:
        filters.append(CenterCrop(224))

    if is_train:
        filters.append(RandomHorizontalFlip())

    filters.append(ToTensor())
    if normalize:
        filters.append(Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225]))
    return Compose(filters)
dataset.py 文件源码 项目:age 作者: ly015 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, crop_size = 128, y_offset = 15, flip = False):

        self.crop_size = crop_size
        self.y_offset = y_offset
        self.flip = flip

        if self.flip:
            self.post_transform = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.Scale(size = 224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                ])
        else:
            self.post_transform = transforms.Compose([
                transforms.Scale(size = 224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                ])
dataset.py 文件源码 项目:superres 作者: ntomita 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def transform_input(crop_size, upscale_factor):
    """LR of target image
    """
    return Compose([
        Scale(crop_size // upscale_factor),
        ])


# def transform_target_batch(crop_size):
#     def transform(image):
#         patches = extract_subimages(image, crop_size, crop_size)
#         patches = [ToTensor()(x) for x in patches]
#         return stack(patches, 0)
#     return transform


# def transform_input_batch(crop_size, upscale_factor):
#     def transform(image):
#         patches = extract_subimages(image, crop_size, crop_size)
#         patches = [Compose([Scale(crop_size//upscale_factor), ToTensor()])(x) for x in patches]
#         return stack(patches, 0)
#     return transform
train.py 文件源码 项目:DeepLearning_PlantDiseases 作者: MarkoArsenovic 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_data(resize):

    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomSizedCrop(max(resize)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            #Higher scale-up for inception
            transforms.Scale(int(max(resize)/224*256)),
            transforms.CenterCrop(max(resize)),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    data_dir = 'PlantVillage'
    dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
             for x in ['train', 'val']}
    dset_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=batch_size,
                                                   shuffle=True)
                    for x in ['train', 'val']}
    dset_sizes = {x: len(dsets[x]) for x in ['train', 'val']}
    dset_classes = dsets['train'].classes

    return dset_loaders['train'], dset_loaders['val']
cartpole_wrapper.py 文件源码 项目:pytorch-nec 作者: mjacar 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, env):
    super(CartPoleWrapper, self).__init__()
    self.env = env.unwrapped
    self.resize = T.Compose([T.ToPILImage(),
                    T.Scale(40, interpolation=Image.CUBIC),
                    T.ToTensor()])
    self.screen_width = 600
    self.action_space = self.env.action_space
preprocess.py 文件源码 项目:convNet.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def scale_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    t_list = [
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ]
    if scale_size != input_size:
        t_list = [transforms.Scale(scale_size)] + t_list

    return transforms.Compose(t_list)
preprocess.py 文件源码 项目:convNet.pytorch 作者: eladhoffer 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def scale_random_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    t_list = [
        transforms.RandomCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ]
    if scale_size != input_size:
        t_list = [transforms.Scale(scale_size)] + t_list

    transforms.Compose(t_list)
greyData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def CreateDataLoader(opt):
    random.seed(opt.manualSeed)

    # folder dataset
    CTrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    VTrans = transforms.Compose([
        RandomSizedCrop(opt.imageSize // 4, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    STrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = ImageFolder(rootC=opt.datarootC,
                          rootS=opt.datarootS,
                          transform=CTrans,
                          vtransform=VTrans,
                          stransform=STrans
                          )

    assert dataset

    return data.DataLoader(dataset, batch_size=opt.batchSize,
                           shuffle=True, num_workers=int(opt.workers), drop_last=True)
nvData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def CreateDataLoader(opt):
    random.seed(opt.manualSeed)

    # folder dataset
    CTrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    VTrans = transforms.Compose([
        RandomSizedCrop(opt.imageSize // 4, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    STrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = ImageFolder(rootC=opt.datarootC,
                          rootS=opt.datarootS,
                          transform=CTrans,
                          vtransform=VTrans,
                          stransform=STrans
                          )

    assert dataset

    return data.DataLoader(dataset, batch_size=opt.batchSize,
                           shuffle=True, num_workers=int(opt.workers), drop_last=True)
opData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def CreateDataLoader(opt):
    random.seed(opt.manualSeed)

    # folder dataset
    CTrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    VTrans = transforms.Compose([
        RandomSizedCrop(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    STrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = ImageFolder(rootC=opt.datarootC,
                          rootS=opt.datarootS,
                          transform=CTrans,
                          vtransform=VTrans,
                          stransform=STrans
                          )

    assert dataset

    return data.DataLoader(dataset, batch_size=opt.batchSize,
                           shuffle=True, num_workers=int(opt.workers), drop_last=True)
proData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def CreateDataLoader(opt):
    random.seed(opt.manualSeed)

    # folder dataset
    CTrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    VTrans = transforms.Compose([
        RandomSizedCrop(opt.imageSize // 4, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    def jitter(x):
        ran = random.uniform(0.7, 1)
        return x * ran + 1 - ran

    STrans = transforms.Compose([
        transforms.Scale(opt.imageSize, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Lambda(jitter),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = ImageFolder(rootC=opt.datarootC,
                          rootS=opt.datarootS,
                          transform=CTrans,
                          vtransform=VTrans,
                          stransform=STrans
                          )

    assert dataset

    return data.DataLoader(dataset, batch_size=opt.batchSize,
                           shuffle=True, num_workers=int(opt.workers), drop_last=True)
data_loader.py 文件源码 项目:DistanceGAN 作者: sagiebenaim 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_loader(config):
    """Builds and returns Dataloader for MNIST and SVHN dataset."""

    transform = transforms.Compose([
                    transforms.Scale(config.image_size),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    svhn = datasets.SVHN(root=config.svhn_path, download=True, transform=transform, split='train')
    mnist = datasets.MNIST(root=config.mnist_path, download=True, transform=transform, train=True)

    svhn_test = datasets.SVHN(root=config.svhn_path, download=True, transform=transform, split='test')
    mnist_test = datasets.MNIST(root=config.mnist_path, download=True, transform=transform, train=False)

    svhn_loader = torch.utils.data.DataLoader(dataset=svhn,
                                              batch_size=config.batch_size,
                                              shuffle=True,
                                              num_workers=config.num_workers)

    mnist_loader = torch.utils.data.DataLoader(dataset=mnist,
                                               batch_size=config.batch_size,
                                               shuffle=True,
                                               num_workers=config.num_workers)


    svhn_test_loader = torch.utils.data.DataLoader(dataset=svhn_test,
                                              batch_size=config.batch_size,
                                              shuffle=False,
                                              num_workers=config.num_workers)

    mnist_test_loader = torch.utils.data.DataLoader(dataset=mnist_test,
                                               batch_size=config.batch_size,
                                               shuffle=False,
                                               num_workers=config.num_workers)

    return svhn_loader, mnist_loader, svhn_test_loader, mnist_test_loader


问题


面经


文章

微信
公众号

扫码关注公众号