def __init__(self, args):
nclass=args.nclass
super(Net, self).__init__()
self.backbone = args.backbone
# copying modules from pretrained models
if self.backbone == 'resnet50':
self.pretrained = resnet.resnet50(pretrained=True)
elif self.backbone == 'resnet101':
self.pretrained = resnet.resnet101(pretrained=True)
elif self.backbone == 'resnet152':
self.pretrained = resnet.resnet152(pretrained=True)
else:
raise RuntimeError('unknown backbone: {}'.format(self.backbone))
n_codes = 32
self.head = nn.Sequential(
nn.Conv2d(2048, 128, 1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
encoding.nn.Encoding(D=128,K=n_codes),
encoding.nn.View(-1, 128*n_codes),
encoding.nn.Normalize(),
nn.Linear(128*n_codes, nclass),
)
python类resnet101()的实例源码
def GetPretrainedModel(params, num_classes):
if params['model'] == 'resnet18':
model = models.resnet18(pretrained=True)
elif params['model'] == 'resnet34':
model = models.resnet34(pretrained=True)
elif params['model'] == 'resnet50':
model = models.resnet50(pretrained=True)
elif params['model'] == 'resnet101':
model = models.resnet101(pretrained=True)
elif params['model'] == 'resnet152':
model = models.resnet152(pretrained=True)
else:
raise ValueError('Unknown model type')
num_features = model.fc.in_features
model.fc = SigmoidLinear(num_features, num_classes)
return model
def resnet101_wildcat(num_classes, pretrained=True, kmax=1, kmin=None, alpha=1, num_maps=1):
model = models.resnet101(pretrained)
pooling = nn.Sequential()
pooling.add_module('class_wise', ClassWisePool(num_maps))
pooling.add_module('spatial', WildcatPool2d(kmax, kmin, alpha))
return ResNetWSL(model, num_classes * num_maps, pooling=pooling)
def __init__(self, num_classes, pretrained=True, use_aux=True):
super(PSPNet, self).__init__()
self.use_aux = use_aux
resnet = models.resnet101()
if pretrained:
resnet.load_state_dict(torch.load(res101_path))
self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
self.layer1, self.layer2, self.layer3, self.layer4 = resnet.layer1, resnet.layer2, resnet.layer3, resnet.layer4
for n, m in self.layer3.named_modules():
if 'conv2' in n:
m.dilation, m.padding, m.stride = (2, 2), (2, 2), (1, 1)
elif 'downsample.0' in n:
m.stride = (1, 1)
for n, m in self.layer4.named_modules():
if 'conv2' in n:
m.dilation, m.padding, m.stride = (4, 4), (4, 4), (1, 1)
elif 'downsample.0' in n:
m.stride = (1, 1)
self.ppm = _PyramidPoolingModule(2048, 512, (1, 2, 3, 6))
self.final = nn.Sequential(
nn.Conv2d(4096, 512, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(512, momentum=.95),
nn.ReLU(inplace=True),
nn.Dropout(0.1),
nn.Conv2d(512, num_classes, kernel_size=1)
)
if use_aux:
self.aux_logits = nn.Conv2d(1024, num_classes, kernel_size=1)
initialize_weights(self.aux_logits)
initialize_weights(self.ppm, self.final)
def resnet101_weldon(num_classes, pretrained=True, kmax=1, kmin=None):
model = models.resnet101(pretrained)
pooling = WeldonPool2d(kmax, kmin)
return ResNetWSL(model, num_classes, pooling=pooling)
def __init__(self):
super(ResNet,self).__init__()
self.features = nn.Sequential(*list(resnet101.children())[:-3])
def __init__(self, opt):
super().__init__()
self.opt = opt
if opt.netSpec == 'resnet101':
resnet = models.resnet101(pretrained=opt.pretrain)
elif opt.netSpec == 'resnet50':
resnet = models.resnet50(pretrained=opt.pretrain)
elif opt.netSpec == 'resnet34':
resnet = models.resnet34(pretrained=opt.pretrain)
self.conv1 = resnet.conv1
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
for m in self.modules():
if isinstance(m, nn.Conv2d):
# m.stride = 1
m.requires_grad = False
if isinstance(m, nn.BatchNorm2d):
m.requires_grad = False
self.layer5a = PSPDec(512, 128, (1,1))
self.layer5b = PSPDec(512, 128, (2,2))
self.layer5c = PSPDec(512, 128, (3,3))
self.layer5d = PSPDec(512, 128, (6,6))
self.final = nn.Sequential(
nn.Conv2d(512*2, 512, 3, padding=1, bias=False),
nn.BatchNorm2d(512, momentum=.95),
nn.ReLU(inplace=True),
nn.Dropout(.1),
nn.Conv2d(512, opt.numClasses, 1),
)
def resnet101(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-101 model.
"""
model = models.resnet101(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['resnet101'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
def load_pretrained_model(faster_rcnn_model, model_name='vgg16'):
if model_name == 'vgg16':
model = models.vgg16(pretrained=True)
faster_rcnn_model.rpn.features = model.features
mod = list(model.classifier.children())[:-1]
faster_rcnn_model.fcs = nn.Sequential(*mod)
elif model_name == 'resnet101':
model = models.resnet101(pretrained=True)
faster_rcnn_model.rpn.features = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool,
model.layer1, model.layer2, model.layer3, model.layer4,
model.avgpool)
faster_rcnn_model.fcs = model.fc
def __init__(self, num_classes, input_size, pretrained=True, use_aux=True):
super(PSPNetDeform, self).__init__()
self.input_size = input_size
self.use_aux = use_aux
resnet = models.resnet101()
if pretrained:
resnet.load_state_dict(torch.load(res101_path))
self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
for n, m in self.layer3.named_modules():
if 'conv2' in n:
m.padding = (1, 1)
m.stride = (1, 1)
elif 'downsample.0' in n:
m.stride = (1, 1)
for n, m in self.layer4.named_modules():
if 'conv2' in n:
m.padding = (1, 1)
m.stride = (1, 1)
elif 'downsample.0' in n:
m.stride = (1, 1)
for idx in range(len(self.layer3)):
self.layer3[idx].conv2 = Conv2dDeformable(self.layer3[idx].conv2)
for idx in range(len(self.layer4)):
self.layer4[idx].conv2 = Conv2dDeformable(self.layer4[idx].conv2)
self.ppm = _PyramidPoolingModule(2048, 512, (1, 2, 3, 6))
self.final = nn.Sequential(
nn.Conv2d(4096, 512, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(512, momentum=.95),
nn.ReLU(inplace=True),
nn.Dropout(0.1),
nn.Conv2d(512, num_classes, kernel_size=1)
)
if use_aux:
self.aux_logits = nn.Conv2d(1024, num_classes, kernel_size=1)
initialize_weights(self.aux_logits)
initialize_weights(self.ppm, self.final)