def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i][1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k][1])
stdv = 1. / math.sqrt(self.kW*self.kH*ninp[idx])
self.weight[k].uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW*self.kH*ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
python类uniform()的实例源码
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i,1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k,1])
stdv = 1. / math.sqrt(self.kW*self.kH*ninp[idx])
self.weight.select(0, k).uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i][1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k][1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight[k].uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i, 1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k, 1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight.select(0, k).uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
SpatialFullConvolutionMap.py 文件源码
项目:pytorch-coriander
作者: hughperkins
项目源码
文件源码
阅读 40
收藏 0
点赞 0
评论 0
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i][1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k][1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight[k].uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i, 1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k, 1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight.select(0, k).uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i][1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k][1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight[k].uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i, 1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k, 1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight.select(0, k).uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def test_from_file(self):
size = 10000
with tempfile.NamedTemporaryFile() as f:
s1 = torch.FloatStorage.from_file(f.name, True, size)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.FloatStorage.from_file(f.name, True, size)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, 0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, 0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, 0)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i][1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k][1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight[k].uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def reset(self, stdv=None):
if stdv is not None:
stdv = stdv * math.sqrt(3)
self.weight.uniform_(-stdv, stdv)
self.bias.uniform_(-stdv, stdv)
else:
ninp = torch.Tensor(self.nOutputPlane).zero_()
for i in range(self.connTable.size(0)):
idx = int(self.connTable[i, 1])
ninp[idx] += 1
for k in range(self.connTable.size(0)):
idx = int(self.connTable[k, 1])
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[idx])
self.weight.select(0, k).uniform_(-stdv, stdv)
for k in range(self.bias.size(0)):
stdv = 1. / math.sqrt(self.kW * self.kH * ninp[k])
# TODO: torch.uniform
self.bias[k] = random.uniform(-stdv, stdv)
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size()-1, 0, -1):
kis[ks.size()-i+1] = ks[i]
#for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone();
ks = k.storage()
kis = ki.storage()
for i in range(ks.size()-1, 0, -1):
kis[ks.size()-i+1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')