def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:,:,0], res2val[:,:,k-1], 0)
self.assertEqual(res1ind[:,:,0], res2ind[:,:,k-1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(res1val, res1ind, x, k)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:,:,0], res2val[:,:,k-1], 0)
self.assertEqual(res1ind[:,:,0], res2ind[:,:,k-1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val[0], res2val[k-1], 0)
self.assertEqual(res1ind[0], res2ind[k-1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)
python类kthvalue()的实例源码
def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :, 0], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :, 0], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(x, k, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :, 0], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :, 0], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val[0], res2val[k - 1], 0)
self.assertEqual(res1ind[0], res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)
def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(x, k, False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], 0)
self.assertEqual(res1ind, res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)
def test_keepdim_warning(self):
torch.utils.backcompat.keepdim_warning.enabled = True
x = Variable(torch.randn(3, 4), requires_grad=True)
def run_backward(y):
y_ = y
if type(y) is tuple:
y_ = y[0]
# check that backward runs smooth
y_.backward(y_.data.new(y_.size()).normal_())
def keepdim_check(f):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
y = f(x, 1)
self.assertTrue(len(w) == 1)
self.assertTrue(issubclass(w[-1].category, UserWarning))
self.assertTrue("keepdim" in str(w[-1].message))
run_backward(y)
self.assertEqual(x.size(), x.grad.size())
# check against explicit keepdim
y2 = f(x, 1, keepdim=False)
self.assertEqual(y, y2)
run_backward(y2)
y3 = f(x, 1, keepdim=True)
if type(y3) == tuple:
y3 = (y3[0].squeeze(1), y3[1].squeeze(1))
else:
y3 = y3.squeeze(1)
self.assertEqual(y, y3)
run_backward(y3)
keepdim_check(torch.sum)
keepdim_check(torch.prod)
keepdim_check(torch.mean)
keepdim_check(torch.max)
keepdim_check(torch.min)
keepdim_check(torch.mode)
keepdim_check(torch.median)
keepdim_check(torch.kthvalue)
keepdim_check(torch.var)
keepdim_check(torch.std)
torch.utils.backcompat.keepdim_warning.enabled = False
def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(x, k, False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], 0)
self.assertEqual(res1ind, res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)
def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(x, k, False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], 0)
self.assertEqual(res1ind, res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)