python类lt()的实例源码

test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_comparison_ops(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)

        eq = x == y
        for idx in iter_indices(x):
            self.assertIs(x[idx] == y[idx], eq[idx] == 1)

        ne = x != y
        for idx in iter_indices(x):
            self.assertIs(x[idx] != y[idx], ne[idx] == 1)

        lt = x < y
        for idx in iter_indices(x):
            self.assertIs(x[idx] < y[idx], lt[idx] == 1)

        le = x <= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] <= y[idx], le[idx] == 1)

        gt = x > y
        for idx in iter_indices(x):
            self.assertIs(x[idx] > y[idx], gt[idx] == 1)

        ge = x >= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
test_torch.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_comparison_ops(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)

        eq = x == y
        for idx in iter_indices(x):
            self.assertIs(x[idx] == y[idx], eq[idx] == 1)

        ne = x != y
        for idx in iter_indices(x):
            self.assertIs(x[idx] != y[idx], ne[idx] == 1)

        lt = x < y
        for idx in iter_indices(x):
            self.assertIs(x[idx] < y[idx], lt[idx] == 1)

        le = x <= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] <= y[idx], le[idx] == 1)

        gt = x > y
        for idx in iter_indices(x):
            self.assertIs(x[idx] > y[idx], gt[idx] == 1)

        ge = x >= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
test_torch.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 137 收藏 0 点赞 0 评论 0
def test_comparison_ops(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)

        eq = x == y
        for idx in iter_indices(x):
            self.assertIs(x[idx] == y[idx], eq[idx] == 1)

        ne = x != y
        for idx in iter_indices(x):
            self.assertIs(x[idx] != y[idx], ne[idx] == 1)

        lt = x < y
        for idx in iter_indices(x):
            self.assertIs(x[idx] < y[idx], lt[idx] == 1)

        le = x <= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] <= y[idx], le[idx] == 1)

        gt = x > y
        for idx in iter_indices(x):
            self.assertIs(x[idx] > y[idx], gt[idx] == 1)

        ge = x >= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_comparison_ops(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)

        eq = x == y
        for idx in iter_indices(x):
            self.assertIs(x[idx] == y[idx], eq[idx] == 1)

        ne = x != y
        for idx in iter_indices(x):
            self.assertIs(x[idx] != y[idx], ne[idx] == 1)

        lt = x < y
        for idx in iter_indices(x):
            self.assertIs(x[idx] < y[idx], lt[idx] == 1)

        le = x <= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] <= y[idx], le[idx] == 1)

        gt = x > y
        for idx in iter_indices(x):
            self.assertIs(x[idx] > y[idx], gt[idx] == 1)

        ge = x >= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
matrix.py 文件源码 项目:paysage 作者: drckf 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def lesser(x: T.FloatTensor, y: T.FloatTensor) -> T.ByteTensor:
    """
    Elementwise test if x < y.

    Args:
        x: A tensor.
        y: A tensor.

    Returns:
        tensor (of bools): Elementwise test of x < y.

    """
    return torch.lt(x, y)
sorting_task.py 文件源码 项目:neural-combinatorial-rl-pytorch 作者: pemami4911 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def reward(sample_solution, USE_CUDA=False):
    """
    The reward for the sorting task is defined as the
    length of the longest sorted consecutive subsequence.

    Input sequences must all be the same length.

    Example: 

    input       | output
    ====================
    [1 4 3 5 2] | [5 1 2 3 4]

    The output gets a reward of 4/5, or 0.8

    The range is [1/sourceL, 1]

    Args:
        sample_solution: list of len sourceL of [batch_size]
        Tensors
    Returns:
        [batch_size] containing trajectory rewards
    """
    batch_size = sample_solution[0].size(0)
    sourceL = len(sample_solution)

    longest = Variable(torch.ones(batch_size), requires_grad=False)
    current = Variable(torch.ones(batch_size), requires_grad=False)

    if USE_CUDA:
        longest = longest.cuda()
        current = current.cuda()

    for i in range(1, sourceL):
        # compare solution[i-1] < solution[i] 
        res = torch.lt(sample_solution[i-1], sample_solution[i]) 
        # if res[i,j] == 1, increment length of current sorted subsequence
        current += res.float()  
        # else, reset current to 1
        current[torch.eq(res, 0)] = 1
        #current[torch.eq(res, 0)] -= 1
        # if, for any, current > longest, update longest
        mask = torch.gt(current, longest)
        longest[mask] = current[mask]
    return -torch.div(longest, sourceL)


问题


面经


文章

微信
公众号

扫码关注公众号