python类mv()的实例源码

PartialLinear.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def accGradParameters(self, input, gradOutput, scale=1):
        self.network.accGradParameters([input, self.partition], gradOutput, scale)
        if self.bias is not None:
            if self.buffer is None:
                self.buffer = input.new()
            self.buffer.resize_(gradOutput.size(1))
            torch.mv(gradOutput.t(), self.addBuffer, out=self.buffer).mul_(scale)
            self.gradBias.index_add_(
                1, self.partition, self.buffer.view(1, self.buffer.nelement())
            )
test_torch.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_mv(self):
        m1 = torch.randn(100, 100)
        v1 = torch.randn(100)

        res1 = torch.mv(m1, v1)
        res2 = res1.clone().zero_()
        for i, j in iter_indices(m1):
            res2[i] += m1[i][j] * v1[j]

        self.assertEqual(res1, res2)
torch_backend.py 文件源码 项目:ktorch 作者: farizrahman4u 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def dot(x, y):
    def _dot(X):
        x, y = X
        x_ndim = ndim(x)
        y_ndim = ndim(y)
        if x_ndim == 2 and y_ndim == 2:
            return torch.mm(x, y)
        if x_ndim == 2 and y_ndim == 1:
            return torch.mv(x, y)
        if x_ndim == 1 and y_ndim == 2:
            return torch.mv(y, x)
        if x_ndim == 1 and y_ndim == 1:
            return torch.dot(x, y)
        else:
            raise Exception('Unsupported tensor ranks for dot operation : ' + str(x_ndim) + ' and ' + str(y_ndim) + '.')

    def _compute_output_shape(X):
        x, y = _get_shape(X[0]), _get_shape(X[1])
        x_ndim = len(x)
        y_ndim = len(y)
        if x_ndim == 2 and y_ndim == 2:
            return (x[0], y[1])
        if x_ndim == 2 and y_ndim == 1:
            return (x[0],)
        if x_ndim == 1 and y_ndim == 2:
            return (y[0],)
        if x_ndim == 1 and y_ndim == 1:
            return (0,)

    return get_op(_dot, output_shape=_compute_output_shape)([x, y])
optnet-back.py 文件源码 项目:optnet 作者: locuslab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_back():
    npr.seed(1)
    nBatch, nz, neq, nineq = 1, 10, 1, 3
    # nz, neq, nineq = 3,3,3

    L = np.tril(np.random.randn(nz,nz)) + 2.*np.eye(nz,nz)
    Q = L.dot(L.T)+1e-4*np.eye(nz)
    G = 100.*npr.randn(nineq,nz)
    A = 100.*npr.randn(neq,nz)
    z0 = 1.*npr.randn(nz)
    s0 = 100.*np.ones(nineq)
    s0[:nineq//2] = 1e-6
    # print(np.linalg.norm(L))
    # print(np.linalg.norm(G))
    # print(np.linalg.norm(A))
    # print(np.linalg.norm(z0))
    # print(np.linalg.norm(s0))

    p = npr.randn(nBatch,nz)
    # print(np.linalg.norm(p))
    truez = npr.randn(nBatch,nz)

    af = adact.AdactFunction()
    zhat_0, nu_0, lam_0 = af.forward_single_np(p[0], L, G, A, z0, s0)
    dl_dzhat_0 = zhat_0-truez[0]
    S = Solver(L, A, G, z0, s0, 1e-8)
    S.reinit(lam_0, zhat_0)
    dp_0, dL_0, dG_0, dA_0, dz0_0, ds0_0 = af.backward_single_np_solver(
        S, zhat_0, nu_0, lam_0, dl_dzhat_0, L, G, A, z0, s0)
    # zhat_1, nu_1, lam_1 = af.forward_single_np(p[1], L, G, A, z0, s0)
    # dl_dzhat_1 = zhat_1-truez[1]
    # S.reinit(lam_1, zhat_1)
    # dp_1, dL_1, dG_1, dA_1, dz0_1, ds0_1 = af.backward_single_np_solver(
    #     S, zhat_1, nu_1, lam_1, dl_dzhat_1, L, G, A, z0, s0)

    p, L, G, A, z0, s0, truez = [torch.DoubleTensor(x) for x in [p, L, G, A, z0, s0, truez]]
    Q = torch.mm(L, L.t())+0.001*torch.eye(nz).type_as(L)
    if cuda:
        p, L, Q, G, A, z0, s0, truez = [x.cuda() for x in [p, L, Q, G, A, z0, s0, truez]]
    p, L, G, A, z0, s0 = [Variable(x) for x in [p, L, G, A, z0, s0]]
    for x in [p, L, G, A, z0, s0]: x.requires_grad = True

    # Q_LU, S_LU, R = aip.pre_factor_kkt_batch(Q, G, A, nBatch)
    # b = torch.mv(A, z0) if neq > 0 else None
    # h = torch.mv(G, z0)+s0
    # zhat_b, nu_b, lam_b = aip.forward_batch(p, Q, G, A, b, h, Q_LU, S_LU, R)

    zhats = af(p, L, G, A, z0, s0)
    dl_dzhat = zhats.data - truez
    zhats.backward(dl_dzhat)
    dp, dL, dG, dA, dz0, ds0 = [x.grad.clone() for x in [p, L, G, A, z0, s0]]
optnet-forward.py 文件源码 项目:optnet 作者: locuslab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def prof_instance(nz, neq, nineq, nBatch, cuda):
    L = np.tril(npr.uniform(0,1, (nz,nz))) + np.eye(nz,nz)
    G = npr.randn(nineq,nz)
    A = npr.randn(neq,nz)
    z0 = npr.randn(nz)
    s0 = np.ones(nineq)
    p = npr.randn(nBatch,nz)

    p, L, G, A, z0, s0 = [torch.Tensor(x) for x in [p, L, G, A, z0, s0]]
    Q = torch.mm(L, L.t())+0.001*torch.eye(nz).type_as(L)
    if cuda:
        p, L, Q, G, A, z0, s0 = [x.cuda() for x in [p, L, Q, G, A, z0, s0]]
    b = torch.mv(A, z0) if neq > 0 else None
    h = torch.mv(G, z0)+s0

    af = adact.AdactFunction()

    single_results = []
    start = time.time()
    U_Q, U_S, R = aip.pre_factor_kkt(Q, G, A)
    for i in range(nBatch):
        single_results.append(aip.forward_single(p[i], Q, G, A, b, h, U_Q, U_S, R))
    single_time = time.time()-start

    start = time.time()
    Q_LU, S_LU, R = aip.pre_factor_kkt_batch(Q, G, A, nBatch)
    zhat_b, nu_b, lam_b = aip.forward_batch(p, Q, G, A, b, h, Q_LU, S_LU, R)
    batched_time = time.time()-start

    zhat_diff = (single_results[0][0] - zhat_b[0]).norm()
    lam_diff = (single_results[0][2] - lam_b[0]).norm()
    eps = 0.1 # Pretty relaxed.
    if zhat_diff > eps or lam_diff > eps:
        print('===========')
        print("Warning: Single and batched solutions might not match.")
        print("  + zhat_diff: {}".format(zhat_diff))
        print("  + lam_diff: {}".format(lam_diff))
        print("  + (nz, neq, nineq, nBatch) = ({}, {}, {}, {})".format(
            nz, neq, nineq, nBatch))
        print('===========')

    return single_time, batched_time
test_autograd.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_functional_blas(self):
        def compare(fn, *args):
            unpacked_args = tuple(arg.data if isinstance(arg, Variable) else arg
                                  for arg in args)
            unpacked_result = fn(*unpacked_args)
            packed_result = fn(*args).data
            # if non-Variable torch function returns a scalar, compare to scalar
            if not torch.is_tensor(unpacked_result):
                assert packed_result.dim() == 1
                assert packed_result.nelement() == 1
                packed_result = packed_result[0]
            self.assertEqual(packed_result, unpacked_result)

        def test_blas_add(fn, x, y, z):
            # Checks all signatures
            compare(fn, x, y, z)
            compare(fn, 0.5, x, y, z)
            compare(fn, 0.5, x, 0.25, y, z)

        def test_blas(fn, x, y):
            compare(fn, x, y)

        test_blas(torch.mm, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10, 4)))
        test_blas_add(torch.addmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.bmm, Variable(torch.randn(4, 2, 10)),
                  Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.addbmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.baddbmm, Variable(torch.randn(4, 2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas(torch.mv, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10)))
        test_blas_add(torch.addmv, Variable(torch.randn(2)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10)))
        test_blas(torch.ger, Variable(torch.randn(5)),
                  Variable(torch.randn(6)))
        test_blas_add(torch.addr, Variable(torch.randn(5, 6)),
                      Variable(torch.randn(5)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(6)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(10, 4)), Variable(torch.randn(4)))
        test_blas(torch.matmul, Variable(torch.randn(5)), Variable(torch.randn(5, 6)))
        test_blas(torch.matmul, Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(5, 2, 10)), Variable(torch.randn(5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(3, 5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(10)))
        test_blas(torch.matmul, Variable(torch.randn(10)), Variable(torch.randn(3, 5, 10, 4)))
pointer.py 文件源码 项目:awd-lstm-lm 作者: salesforce 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def evaluate(data_source, batch_size=10, window=args.window):
    # Turn on evaluation mode which disables dropout.
    if args.model == 'QRNN': model.reset()
    model.eval()
    total_loss = 0
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(batch_size)
    next_word_history = None
    pointer_history = None
    for i in range(0, data_source.size(0) - 1, args.bptt):
        if i > 0: print(i, len(data_source), math.exp(total_loss / i))
        data, targets = get_batch(data_source, i, evaluation=True, args=args)
        output, hidden, rnn_outs, _ = model(data, hidden, return_h=True)
        rnn_out = rnn_outs[-1].squeeze()
        output_flat = output.view(-1, ntokens)
        ###
        # Fill pointer history
        start_idx = len(next_word_history) if next_word_history is not None else 0
        next_word_history = torch.cat([one_hot(t.data[0], ntokens) for t in targets]) if next_word_history is None else torch.cat([next_word_history, torch.cat([one_hot(t.data[0], ntokens) for t in targets])])
        #print(next_word_history)
        pointer_history = Variable(rnn_out.data) if pointer_history is None else torch.cat([pointer_history, Variable(rnn_out.data)], dim=0)
        #print(pointer_history)
        ###
        # Built-in cross entropy
        # total_loss += len(data) * criterion(output_flat, targets).data[0]
        ###
        # Manual cross entropy
        # softmax_output_flat = torch.nn.functional.softmax(output_flat)
        # soft = torch.gather(softmax_output_flat, dim=1, index=targets.view(-1, 1))
        # entropy = -torch.log(soft)
        # total_loss += len(data) * entropy.mean().data[0]
        ###
        # Pointer manual cross entropy
        loss = 0
        softmax_output_flat = torch.nn.functional.softmax(output_flat)
        for idx, vocab_loss in enumerate(softmax_output_flat):
            p = vocab_loss
            if start_idx + idx > window:
                valid_next_word = next_word_history[start_idx + idx - window:start_idx + idx]
                valid_pointer_history = pointer_history[start_idx + idx - window:start_idx + idx]
                logits = torch.mv(valid_pointer_history, rnn_out[idx])
                theta = args.theta
                ptr_attn = torch.nn.functional.softmax(theta * logits).view(-1, 1)
                ptr_dist = (ptr_attn.expand_as(valid_next_word) * valid_next_word).sum(0).squeeze()
                lambdah = args.lambdasm
                p = lambdah * ptr_dist + (1 - lambdah) * vocab_loss
            ###
            target_loss = p[targets[idx].data]
            loss += (-torch.log(target_loss)).data[0]
        total_loss += loss / batch_size
        ###
        hidden = repackage_hidden(hidden)
        next_word_history = next_word_history[-window:]
        pointer_history = pointer_history[-window:]
    return total_loss / len(data_source)

# Load the best saved model.
test_autograd.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_functional_blas(self):
        def compare(fn, *args):
            unpacked_args = tuple(arg.data if isinstance(arg, Variable) else arg
                                  for arg in args)
            unpacked_result = fn(*unpacked_args)
            packed_result = fn(*args).data
            # if non-Variable torch function returns a scalar, compare to scalar
            if not torch.is_tensor(unpacked_result):
                assert packed_result.dim() == 1
                assert packed_result.nelement() == 1
                packed_result = packed_result[0]
            self.assertEqual(packed_result, unpacked_result)

        def test_blas_add(fn, x, y, z):
            # Checks all signatures
            compare(fn, x, y, z)
            compare(fn, 0.5, x, y, z)
            compare(fn, 0.5, x, 0.25, y, z)

        def test_blas(fn, x, y):
            compare(fn, x, y)

        test_blas(torch.mm, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10, 4)))
        test_blas_add(torch.addmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.bmm, Variable(torch.randn(4, 2, 10)),
                  Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.addbmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.baddbmm, Variable(torch.randn(4, 2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas(torch.mv, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10)))
        test_blas_add(torch.addmv, Variable(torch.randn(2)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10)))
        test_blas(torch.ger, Variable(torch.randn(5)),
                  Variable(torch.randn(6)))
        test_blas_add(torch.addr, Variable(torch.randn(5, 6)),
                      Variable(torch.randn(5)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(6)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(10, 4)), Variable(torch.randn(4)))
        test_blas(torch.matmul, Variable(torch.randn(5)), Variable(torch.randn(5, 6)))
        test_blas(torch.matmul, Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(5, 2, 10)), Variable(torch.randn(5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(3, 5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(10)))
        test_blas(torch.matmul, Variable(torch.randn(10)), Variable(torch.randn(3, 5, 10, 4)))


问题


面经


文章

微信
公众号

扫码关注公众号