def test_sequence_wise_torch_data_loader():
import torch
from torch.utils import data as data_utils
X, Y = _get_small_datasets(padded=False)
class TorchDataset(data_utils.Dataset):
def __init__(self, X, Y):
self.X = X
self.Y = Y
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]), torch.from_numpy(self.Y[idx])
def __len__(self):
return len(self.X)
def __test(X, Y, batch_size):
dataset = TorchDataset(X, Y)
loader = data_utils.DataLoader(
dataset, batch_size=batch_size, num_workers=1, shuffle=True)
for idx, (x, y) in enumerate(loader):
assert len(x.shape) == len(y.shape)
assert len(x.shape) == 3
print(idx, x.shape, y.shape)
# Test with batch_size = 1
yield __test, X, Y, 1
# Since we have variable length frames, batch size larger than 1 causes
# runtime error.
yield raises(RuntimeError)(__test), X, Y, 2
# For padded dataset, which can be reprensented by (N, T^max, D), batchsize
# can be any number.
X, Y = _get_small_datasets(padded=True)
yield __test, X, Y, 1
yield __test, X, Y, 2
python类utils()的实例源码
def test_frame_wise_torch_data_loader():
import torch
from torch.utils import data as data_utils
X, Y = _get_small_datasets(padded=False)
# Since torch's Dataset (and Chainer, and maybe others) assumes dataset has
# fixed size length, i.e., implements `__len__` method, we need to know
# number of frames for each utterance.
# Sum of the number of frames is the dataset size for frame-wise iteration.
lengths = np.array([len(x) for x in X], dtype=np.int)
# For the above reason, we need to explicitly give the number of frames.
X = MemoryCacheFramewiseDataset(X, lengths, cache_size=len(X))
Y = MemoryCacheFramewiseDataset(Y, lengths, cache_size=len(Y))
class TorchDataset(data_utils.Dataset):
def __init__(self, X, Y):
self.X = X
self.Y = Y
def __getitem__(self, idx):
return torch.from_numpy(self.X[idx]), torch.from_numpy(self.Y[idx])
def __len__(self):
return len(self.X)
def __test(X, Y, batch_size):
dataset = TorchDataset(X, Y)
loader = data_utils.DataLoader(
dataset, batch_size=batch_size, num_workers=1, shuffle=True)
for idx, (x, y) in enumerate(loader):
assert len(x.shape) == 2
assert len(y.shape) == 2
yield __test, X, Y, 128
yield __test, X, Y, 256
def forward(self, sequence, lengths, h, c):
sequence = nn.utils.rnn.pack_padded_sequence(sequence, lengths,
batch_first=True)
output, (h, c) = self.lstm(sequence, (h, c))
output, output_lengths = nn.utils.rnn.pad_packed_sequence(
output, batch_first=True)
output = self.hidden2out(output)
return output
def load_state_dict(model, model_urls, model_root):
from torch.utils import model_zoo
from torch import nn
import re
from collections import OrderedDict
own_state_old = model.state_dict()
own_state = OrderedDict() # remove all 'group' string
for k, v in own_state_old.items():
k = re.sub('group\d+\.', '', k)
own_state[k] = v
state_dict = model_zoo.load_url(model_urls, model_root)
for name, param in state_dict.items():
if name not in own_state:
print(own_state.keys())
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[name].copy_(param)
missing = set(own_state.keys()) - set(state_dict.keys())
if len(missing) > 0:
raise KeyError('missing keys in state_dict: "{}"'.format(missing))
def main ():
global args
args = parser.parse_args()
print('\nCUDA status: {}'.format(args.cuda))
print('\nLoad pretrained model on Imagenet')
model = pretrainedmodels.__dict__[args.arch](num_classes=1000, pretrained='imagenet')
model.eval()
if args.cuda:
model.cuda()
features_size = model.last_linear.in_features
model.last_linear = pretrainedmodels.utils.Identity() # Trick to get inputs (features) from last_linear
print('\nLoad datasets')
tf_img = pretrainedmodels.utils.TransformImage(model)
train_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'train', transform=tf_img)
val_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'val', transform=tf_img)
test_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'test', transform=tf_img)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
print('\nLoad features')
dir_features = os.path.join(args.dir_outputs, 'data/{}'.format(args.arch))
path_train_data = '{}/{}set.pth'.format(dir_features, 'train')
path_val_data = '{}/{}set.pth'.format(dir_features, 'val')
path_test_data = '{}/{}set.pth'.format(dir_features, 'test')
features = {}
targets = {}
features['train'], targets['train'] = extract_features_targets(model, features_size, train_loader, path_train_data, args.cuda)
features['val'], targets['val'] = extract_features_targets(model, features_size, val_loader, path_val_data, args.cuda)
features['test'], targets['test'] = extract_features_targets(model, features_size, test_loader, path_test_data, args.cuda)
features['trainval'] = torch.cat([features['train'], features['val']], 0)
targets['trainval'] = torch.cat([targets['train'], targets['val']], 0)
print('\nTrain Support Vector Machines')
if args.train_split == 'train' and args.test_split == 'val':
print('\nHyperparameters search: train multilabel classifiers (on-versus-all) on train/val')
elif args.train_split == 'trainval' and args.test_split == 'test':
print('\nEvaluation: train a multilabel classifier on trainval/test')
else:
raise ValueError('Trying to train on {} and eval on {}'.format(args.train_split, args.test_split))
train_multilabel(features, targets, train_set.classes, args.train_split, args.test_split, C=args.C)