python类eq()的实例源码

loss.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def forward(self, input, target):
        buffer = input.new()
        buffer.resize_as_(input).copy_(input)
        buffer[torch.eq(target, -1.)] = 0
        output = buffer.sum()

        buffer.fill_(self.margin).add_(-1, input)
        buffer.cmax_(0)
        buffer[torch.eq(target, 1.)] = 0
        output += buffer.sum()

        if self.size_average:
            output = output / input.nelement()

        self.save_for_backward(input, target)
        return input.new((output,))
loss.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def forward(self, input, target):
        buffer = input.new()
        buffer.resize_as_(input).copy_(input)
        buffer[torch.eq(target, -1.)] = 0
        output = buffer.sum()

        buffer.fill_(self.margin).add_(-1, input)
        buffer.clamp_(min=0)
        buffer[torch.eq(target, 1.)] = 0
        output += buffer.sum()

        if self.size_average:
            output = output / input.nelement()

        self.save_for_backward(input, target)
        return input.new((output,))
HingeEmbeddingCriterion.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        if self.buffer is None:
            self.buffer = input.new()
        self.buffer.resize_as_(input).copy_(input)
        self.buffer[torch.eq(y, -1.)] = 0
        self.output = self.buffer.sum()

        self.buffer.fill_(self.margin).add_(-1, input)
        self.buffer.clamp_(min=0)
        self.buffer[torch.eq(y, 1.)] = 0
        self.output = self.output + self.buffer.sum()

        if self.sizeAverage:
            self.output = self.output / input.nelement()

        return self.output
loss.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def forward(self, input, target):
        buffer = input.new()
        buffer.resize_as_(input).copy_(input)
        buffer[torch.eq(target, -1.)] = 0
        output = buffer.sum()

        buffer.fill_(self.margin).add_(-1, input)
        buffer.clamp_(min=0)
        buffer[torch.eq(target, 1.)] = 0
        output += buffer.sum()

        if self.size_average:
            output = output / input.nelement()

        self.save_for_backward(input, target)
        return input.new((output,))
HingeEmbeddingCriterion.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        if self.buffer is None:
            self.buffer = input.new()
        self.buffer.resize_as_(input).copy_(input)
        self.buffer[torch.eq(y, -1.)] = 0
        self.output = self.buffer.sum()

        self.buffer.fill_(self.margin).add_(-1, input)
        self.buffer.clamp_(min=0)
        self.buffer[torch.eq(y, 1.)] = 0
        self.output = self.output + self.buffer.sum()

        if self.sizeAverage:
            self.output = self.output / input.nelement()

        return self.output
loss.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def forward(ctx, input, target, margin, size_average):
        ctx.margin = margin
        ctx.size_average = size_average
        buffer = input.new()
        buffer.resize_as_(input).copy_(input)
        buffer[torch.eq(target, -1.)] = 0
        output = buffer.sum()

        buffer.fill_(ctx.margin).add_(-1, input)
        buffer.clamp_(min=0)
        buffer[torch.eq(target, 1.)] = 0
        output += buffer.sum()

        if ctx.size_average:
            output = output / input.nelement()

        ctx.save_for_backward(input, target)
        return input.new((output,))
HingeEmbeddingCriterion.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        if self.buffer is None:
            self.buffer = input.new()
        self.buffer.resize_as_(input).copy_(input)
        self.buffer[torch.eq(y, -1.)] = 0
        self.output = self.buffer.sum()

        self.buffer.fill_(self.margin).add_(-1, input)
        self.buffer.clamp_(min=0)
        self.buffer[torch.eq(y, 1.)] = 0
        self.output = self.output + self.buffer.sum()

        if self.sizeAverage:
            self.output = self.output / input.nelement()

        return self.output
sequence_labeling.py 文件源码 项目:NeuroNLP2 作者: XuezheMax 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def decode(self, input_word, input_char, target=None, mask=None, length=None, hx=None, leading_symbolic=0):
        # output from rnn [batch, length, tag_space]
        output, _, mask, length = self._get_rnn_output(input_word, input_char, mask=mask, length=length, hx=hx)

        if target is None:
            return self.crf.decode(output, mask=mask, leading_symbolic=leading_symbolic), None

        if length is not None:
            max_len = length.max()
            target = target[:, :max_len]

        preds = self.crf.decode(output, mask=mask, leading_symbolic=leading_symbolic)
        if mask is None:
            return preds, torch.eq(preds, target.data).float().sum()
        else:
            return preds, (torch.eq(preds, target.data).float() * mask.data).sum()
loss.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def forward(ctx, input, target, margin, size_average):
        ctx.margin = margin
        ctx.size_average = size_average
        buffer = input.new()
        buffer.resize_as_(input).copy_(input)
        buffer[torch.eq(target, -1.)] = 0
        output = buffer.sum()

        buffer.fill_(ctx.margin).add_(-1, input)
        buffer.clamp_(min=0)
        buffer[torch.eq(target, 1.)] = 0
        output += buffer.sum()

        if ctx.size_average:
            output = output / input.nelement()

        ctx.save_for_backward(input, target)
        return input.new((output,))
HingeEmbeddingCriterion.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        if self.buffer is None:
            self.buffer = input.new()
        self.buffer.resize_as_(input).copy_(input)
        self.buffer[torch.eq(y, -1.)] = 0
        self.output = self.buffer.sum()

        self.buffer.fill_(self.margin).add_(-1, input)
        self.buffer.clamp_(min=0)
        self.buffer[torch.eq(y, 1.)] = 0
        self.output = self.output + self.buffer.sum()

        if self.sizeAverage:
            self.output = self.output / input.nelement()

        return self.output
loss.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        v1, v2, y = self.saved_tensors

        buffer = v1.new()
        _idx = self._new_idx(v1)

        gw1 = grad_output.new()
        gw2 = grad_output.new()
        gw1.resize_as_(v1).copy_(v2)
        gw2.resize_as_(v1).copy_(v1)

        torch.mul(buffer, self.w1, self.w22)
        gw1.addcmul_(-1, buffer.expand_as(v1), v1)
        gw1.mul_(self.w.expand_as(v1))

        torch.mul(buffer, self.w1, self.w32)
        gw2.addcmul_(-1, buffer.expand_as(v1), v2)
        gw2.mul_(self.w.expand_as(v1))

        torch.le(_idx, self._outputs, 0)
        _idx = _idx.view(-1, 1).expand(gw1.size())
        gw1[_idx] = 0
        gw2[_idx] = 0

        torch.eq(_idx, y, 1)
        _idx = _idx.view(-1, 1).expand(gw2.size())
        gw1[_idx] = gw1[_idx].mul_(-1)
        gw2[_idx] = gw2[_idx].mul_(-1)

        if self.size_average:
            gw1.div_(y.size(0))
            gw2.div_(y.size(0))

        if grad_output[0] != 1:
            gw1.mul_(grad_output)
            gw2.mul_(grad_output)

        return gw1, gw2, None
loss.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        input, target = self.saved_tensors
        grad_input = input.new().resize_as_(input).copy_(target)
        grad_input[torch.mul(torch.eq(target, -1), torch.gt(input, self.margin))] = 0

        if self.size_average:
            grad_input.mul_(1. / input.nelement())

        if grad_output[0] != 1:
            grad_input.mul_(grad_output[0])

        return grad_input, None
HingeEmbeddingCriterion.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        self.buffer = self.buffer or input.new()
        self.buffer.resize_as_(input).copy_(input)
        self.buffer[torch.eq(y, -1.)] = 0
        self.output = self.buffer.sum()

        self.buffer.fill_(self.margin).add_(-1, input)
        self.buffer.cmax_(0)
        self.buffer[torch.eq(y, 1.)] = 0
        self.output = self.output + self.buffer.sum()

        if self.sizeAverage:
            self.output = self.output / input.nelement()

        return self.output
HingeEmbeddingCriterion.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, y):
        self.gradInput.resize_as_(input).copy_(y)
        self.gradInput[torch.mul(torch.eq(y, -1), torch.gt(input, self.margin))] = 0

        if self.sizeAverage:
            self.gradInput.mul_(1. / input.nelement())

        return self.gradInput
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
loss.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def forward(self, input1, input2, y):
        self.w1 = input1.new()
        self.w22 = input1.new()
        self.w = input1.new()
        self.w32 = input1.new()
        self._outputs = input1.new()

        _idx = input1.new().byte()

        buffer = torch.mul(input1, input2)
        torch.sum(buffer, 1, out=self.w1)

        epsilon = 1e-12
        torch.mul(input1, input1, out=buffer)
        torch.sum(buffer, 1, out=self.w22).add_(epsilon)

        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=buffer)
        torch.sum(buffer, 1, out=self.w32).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].mul_(-1).add_(1)

        output = self._outputs.sum()

        if self.size_average:
            output = output / y.size(0)

        self.save_for_backward(input1, input2, y)
        return input1.new((output,))
loss.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        v1, v2, y = self.saved_tensors

        buffer = v1.new()
        _idx = v1.new().byte()

        gw1 = grad_output.new()
        gw2 = grad_output.new()
        gw1.resize_as_(v1).copy_(v2)
        gw2.resize_as_(v1).copy_(v1)

        torch.mul(self.w1, self.w22, out=buffer)
        gw1.addcmul_(-1, buffer.expand_as(v1), v1)
        gw1.mul_(self.w.expand_as(v1))

        torch.mul(self.w1, self.w32, out=buffer)
        gw2.addcmul_(-1, buffer.expand_as(v1), v2)
        gw2.mul_(self.w.expand_as(v1))

        torch.le(self._outputs, 0, out=_idx)
        _idx = _idx.view(-1, 1).expand(gw1.size())
        gw1[_idx] = 0
        gw2[_idx] = 0

        torch.eq(y, 1, out=_idx)
        _idx = _idx.view(-1, 1).expand(gw2.size())
        gw1[_idx] = gw1[_idx].mul_(-1)
        gw2[_idx] = gw2[_idx].mul_(-1)

        if self.size_average:
            gw1.div_(y.size(0))
            gw2.div_(y.size(0))

        grad_output_val = grad_output[0]
        if grad_output_val != 1:
            gw1.mul_(grad_output_val)
            gw2.mul_(grad_output_val)

        return gw1, gw2, None
loss.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        input, target = self.saved_tensors
        grad_input = input.new().resize_as_(input).copy_(target)
        grad_input[torch.mul(torch.eq(target, -1), torch.gt(input, self.margin))] = 0

        if self.size_average:
            grad_input.mul_(1. / input.nelement())

        if grad_output[0] != 1:
            grad_input.mul_(grad_output[0])

        return grad_input, None
HingeEmbeddingCriterion.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, y):
        self.gradInput.resize_as_(input).copy_(y)
        self.gradInput[torch.mul(torch.eq(y, -1), torch.gt(input, self.margin))] = 0

        if self.sizeAverage:
            self.gradInput.mul_(1. / input.nelement())

        return self.gradInput
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_comparison_ops(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)

        eq = x == y
        for idx in iter_indices(x):
            self.assertIs(x[idx] == y[idx], eq[idx] == 1)

        ne = x != y
        for idx in iter_indices(x):
            self.assertIs(x[idx] != y[idx], ne[idx] == 1)

        lt = x < y
        for idx in iter_indices(x):
            self.assertIs(x[idx] < y[idx], lt[idx] == 1)

        le = x <= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] <= y[idx], le[idx] == 1)

        gt = x > y
        for idx in iter_indices(x):
            self.assertIs(x[idx] > y[idx], gt[idx] == 1)

        ge = x >= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
loss.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 82 收藏 0 点赞 0 评论 0
def forward(self, input1, input2, y):
        self.w1 = input1.new()
        self.w22 = input1.new()
        self.w = input1.new()
        self.w32 = input1.new()
        self._outputs = input1.new()

        _idx = input1.new().byte()

        buffer = torch.mul(input1, input2)
        torch.sum(buffer, 1, out=self.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=buffer)
        torch.sum(buffer, 1, out=self.w22, keepdim=True).add_(epsilon)

        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=buffer)
        torch.sum(buffer, 1, out=self.w32, keepdim=True).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].mul_(-1).add_(1)

        output = self._outputs.sum()

        if self.size_average:
            output = output / y.size(0)

        self.save_for_backward(input1, input2, y)
        return input1.new((output,))
loss.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        v1, v2, y = self.saved_tensors

        buffer = v1.new()
        _idx = v1.new().byte()

        gw1 = grad_output.new()
        gw2 = grad_output.new()
        gw1.resize_as_(v1).copy_(v2)
        gw2.resize_as_(v1).copy_(v1)

        torch.mul(self.w1, self.w22, out=buffer)
        gw1.addcmul_(-1, buffer.expand_as(v1), v1)
        gw1.mul_(self.w.expand_as(v1))

        torch.mul(self.w1, self.w32, out=buffer)
        gw2.addcmul_(-1, buffer.expand_as(v1), v2)
        gw2.mul_(self.w.expand_as(v1))

        torch.le(self._outputs, 0, out=_idx)
        _idx = _idx.view(-1, 1).expand(gw1.size())
        gw1[_idx] = 0
        gw2[_idx] = 0

        torch.eq(y, 1, out=_idx)
        _idx = _idx.view(-1, 1).expand(gw2.size())
        gw1[_idx] = gw1[_idx].mul_(-1)
        gw2[_idx] = gw2[_idx].mul_(-1)

        if self.size_average:
            gw1.div_(y.size(0))
            gw2.div_(y.size(0))

        grad_output_val = grad_output[0]
        if grad_output_val != 1:
            gw1.mul_(grad_output_val)
            gw2.mul_(grad_output_val)

        return gw1, gw2, None
loss.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        input, target = self.saved_tensors
        grad_input = input.new().resize_as_(input).copy_(target)
        grad_input[torch.mul(torch.eq(target, -1), torch.gt(input, self.margin))] = 0

        if self.size_average:
            grad_input.mul_(1. / input.nelement())

        if grad_output[0] != 1:
            grad_input.mul_(grad_output[0])

        return grad_input, None
HingeEmbeddingCriterion.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, y):
        self.gradInput.resize_as_(input).copy_(y)
        self.gradInput[torch.mul(torch.eq(y, -1), torch.gt(input, self.margin))] = 0

        if self.sizeAverage:
            self.gradInput.mul_(1. / input.nelement())

        return self.gradInput
test_torch.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_logical(self):
        x = torch.rand(100, 100) * 2 - 1
        xx = x.clone()

        xgt = torch.gt(x, 1)
        xlt = torch.lt(x, 1)

        xeq = torch.eq(x, 1)
        xne = torch.ne(x, 1)

        neqs = xgt + xlt
        all = neqs + xeq
        self.assertEqual(neqs.sum(), xne.sum(), 0)
        self.assertEqual(x.nelement(), all.sum())
test_torch.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_comparison_ops(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)

        eq = x == y
        for idx in iter_indices(x):
            self.assertIs(x[idx] == y[idx], eq[idx] == 1)

        ne = x != y
        for idx in iter_indices(x):
            self.assertIs(x[idx] != y[idx], ne[idx] == 1)

        lt = x < y
        for idx in iter_indices(x):
            self.assertIs(x[idx] < y[idx], lt[idx] == 1)

        le = x <= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] <= y[idx], le[idx] == 1)

        gt = x > y
        for idx in iter_indices(x):
            self.assertIs(x[idx] > y[idx], gt[idx] == 1)

        ge = x >= y
        for idx in iter_indices(x):
            self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
loss.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def backward(ctx, grad_output):
        v1, v2, y = ctx.saved_tensors

        buffer = v1.new()
        _idx = v1.new().byte()

        gw1 = grad_output.new()
        gw2 = grad_output.new()
        gw1.resize_as_(v1).copy_(v2)
        gw2.resize_as_(v1).copy_(v1)

        torch.mul(ctx.w1, ctx.w22, out=buffer)
        gw1.addcmul_(-1, buffer.expand_as(v1), v1)
        gw1.mul_(ctx.w.expand_as(v1))

        torch.mul(ctx.w1, ctx.w32, out=buffer)
        gw2.addcmul_(-1, buffer.expand_as(v1), v2)
        gw2.mul_(ctx.w.expand_as(v1))

        torch.le(ctx._outputs, 0, out=_idx)
        _idx = _idx.view(-1, 1).expand(gw1.size())
        gw1[_idx] = 0
        gw2[_idx] = 0

        torch.eq(y, 1, out=_idx)
        _idx = _idx.view(-1, 1).expand(gw2.size())
        gw1[_idx] = gw1[_idx].mul_(-1)
        gw2[_idx] = gw2[_idx].mul_(-1)

        if ctx.size_average:
            gw1.div_(y.size(0))
            gw2.div_(y.size(0))

        grad_output_val = grad_output[0]
        if grad_output_val != 1:
            gw1.mul_(grad_output_val)
            gw2.mul_(grad_output_val)

        return gw1, gw2, None, None, None
loss.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def forward(ctx, input, target, grad_output, margin, size_average):
        ctx.margin = margin
        ctx.size_average = size_average
        ctx.save_for_backward(input, target, grad_output)
        grad_input = input.new().resize_as_(input).copy_(target)
        grad_input[torch.mul(torch.eq(target, -1), torch.gt(input, ctx.margin))] = 0

        if ctx.size_average:
            grad_input.mul_(1. / input.nelement())

        if grad_output[0] != 1:
            grad_input.mul_(grad_output[0])

        return grad_input
HingeEmbeddingCriterion.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, y):
        self.gradInput.resize_as_(input).copy_(y)
        self.gradInput[torch.mul(torch.eq(y, -1), torch.gt(input, self.margin))] = 0

        if self.sizeAverage:
            self.gradInput.mul_(1. / input.nelement())

        return self.gradInput


问题


面经


文章

微信
公众号

扫码关注公众号