python类div()的实例源码

loss.py 文件源码 项目:torchbiomed 作者: mattmacy 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def backward(self, grad_output):
        input, _ = self.saved_tensors
        intersect, union = self.intersect, self.union
        target = self.target_
        gt = torch.div(target, union)
        IoU2 = intersect/(union*union)
        pred = torch.mul(input[:, 1], IoU2)
        dDice = torch.add(torch.mul(gt, 2), torch.mul(pred, -4))
        grad_input = torch.cat((torch.mul(dDice, -grad_output[0]),
                                torch.mul(dDice, grad_output[0])), 0)
        return grad_input , None
loss.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def forward(self, input1, input2, y):
        self.w1  = input1.new()
        self.w22 = input1.new()
        self.w  = input1.new()
        self.w32 = input1.new()
        self._outputs = input1.new()

        buffer = input1.new()
        _idx = self._new_idx(input1)

        torch.mul(buffer, input1, input2)
        torch.sum(self.w1, buffer, 1)

        epsilon = 1e-12
        torch.mul(buffer, input1, input1)
        torch.sum(self.w22, buffer, 1).add_(epsilon)

        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self.w22, self._outputs, self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(buffer, input2, input2)
        torch.sum(self.w32, buffer, 1).add_(epsilon)
        torch.div(self.w32, self._outputs, self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self._outputs, self.w1, self.w)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(_idx, y, -1)
        self._outputs[_idx] = self._outputs[_idx].add_(-self.margin).cmax_(0)
        torch.eq(_idx, y, 1)
        self._outputs[_idx] = self._outputs[_idx].mul_(-1).add_(1)

        output = self._outputs.sum()

        if self.size_average:
            output = output / y.size(0)

        self.save_for_backward(input1, input2, y)
        return input1.new((output,))
CosineEmbeddingCriterion.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        input1, input2 = input[0], input[1]

        # keep backward compatibility
        if not self.buffer:
            self.buffer = input1.new()
            self.w1  = input1.new()
            self.w22 = input1.new()
            self.w  = input1.new()
            self.w32 = input1.new()
            self._outputs = input1.new()

            # comparison operators behave differently from cuda/c implementations
            # TODO: verify name
            if input1.type() == 'torch.cuda.FloatTensor':
                self._idx = torch.cuda.ByteTensor()
            else:
                self._idx = torch.ByteTensor()

        torch.mul(self.buffer, input1, input2)
        torch.sum(self.w1, self.buffer, 1)

        epsilon = 1e-12
        torch.mul(self.buffer, input1, input1)
        torch.sum(self.w22, self.buffer, 1).add_(epsilon)
        # self._outputs is also used as a temporary buffer
        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self.w22, self._outputs, self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(self.buffer, input2, input2)
        torch.sum(self.w32, self.buffer, 1).add_(epsilon)
        torch.div(self.w32, self._outputs, self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self._outputs, self.w1, self.w)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(self._idx, y, -1)
        self._outputs[self._idx] = self._outputs[self._idx].add_(-self.margin).cmax_(0)
        torch.eq(self._idx, y, 1)
        self._outputs[self._idx] = self._outputs[self._idx].mul_(-1).add_(1)

        self.output = self._outputs.sum()

        if self.sizeAverage:
           self.output = self.output / y.size(0)

        return self.output
WeightedEuclidean.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if not self.gradInput:
           return

        self._div = self._div or input.new()
        self._output = self._output or self.output.new()
        self._expand4 = self._expand4 or input.new()
        self._gradOutput = self._gradOutput or input.new()

        if not self.fastBackward:
           self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * c_j * c_j * (w_j - x)   c_j * c_j * (x - w_j)
        ---- = -------------------------- = ---------------------
         dx     2 || c_j * (w_j - x) ||              y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(1e-7)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(self._div, gradOutput, self._output)
        if input.dim() == 1:
            self._div.resize_(1, outputSize)
            self._expand4 = self._div.expand_as(self.weight)

            if torch.type(input) == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
            else:
                self._repeat2.mul_(self._repeat, self._expand4)

            self._repeat2.mul_(self.diagCov)
            torch.sum(self.gradInput, self._repeat2, 1)
            self.gradInput.resize_as_(input)
        elif input.dim() == 2:
            batchSize = input.size(0)

            self._div.resize_(batchSize, 1, outputSize)
            self._expand4 = self._div.expand(batchSize, inputSize, outputSize)

            if input.type() == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
                self._repeat2.mul_(self._repeat3)
            else:
                torch.mul(self._repeat2, self._repeat, self._expand4)
                self._repeat2.mul_(self._expand3)


            torch.sum(self.gradInput, self._repeat2, 2)
            self.gradInput.resize_as_(input)
        else:
            raise RuntimeError("1D or 2D input expected")

        return self.gradInput
main.py 文件源码 项目:SimGAN_pytorch 作者: AlexHex7 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def pre_train_r(self):
        print('=' * 50)
        if cfg.ref_pre_path:
            print('Loading R_pre from %s' % cfg.ref_pre_path)
            self.R.load_state_dict(torch.load(cfg.ref_pre_path))
            return

        # we first train the R? network with just self-regularization loss for 1,000 steps
        print('pre-training the refiner network %d times...' % cfg.r_pretrain)

        for index in range(cfg.r_pretrain):
            syn_image_batch, _ = self.syn_train_loader.__iter__().next()
            syn_image_batch = Variable(syn_image_batch).cuda(cfg.cuda_num)

            self.R.train()
            ref_image_batch = self.R(syn_image_batch)

            r_loss = self.self_regularization_loss(ref_image_batch, syn_image_batch)
            # r_loss = torch.div(r_loss, cfg.batch_size)
            r_loss = torch.mul(r_loss, self.delta)

            self.opt_R.zero_grad()
            r_loss.backward()
            self.opt_R.step()

            # log every `log_interval` steps
            if (index % cfg.r_pre_per == 0) or (index == cfg.r_pretrain - 1):
                # figure_name = 'refined_image_batch_pre_train_step_{}.png'.format(index)
                print('[%d/%d] (R)reg_loss: %.4f' % (index, cfg.r_pretrain, r_loss.data[0]))

                syn_image_batch, _ = self.syn_train_loader.__iter__().next()
                syn_image_batch = Variable(syn_image_batch, volatile=True).cuda(cfg.cuda_num)

                real_image_batch, _ = self.real_loader.__iter__().next()
                real_image_batch = Variable(real_image_batch, volatile=True)

                self.R.eval()
                ref_image_batch = self.R(syn_image_batch)

                figure_path = os.path.join(cfg.train_res_path, 'refined_image_batch_pre_train_%d.png' % index)
                generate_img_batch(syn_image_batch.data.cpu(), ref_image_batch.data.cpu(),
                                   real_image_batch.data, figure_path)
                self.R.train()

                print('Save R_pre to models/R_pre.pkl')
                torch.save(self.R.state_dict(), 'models/R_pre.pkl')
main.py 文件源码 项目:SimGAN_pytorch 作者: AlexHex7 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def pre_train_d(self):
        print('=' * 50)
        if cfg.disc_pre_path:
            print('Loading D_pre from %s' % cfg.disc_pre_path)
            self.D.load_state_dict(torch.load(cfg.disc_pre_path))
            return

        # and D? for 200 steps (one mini-batch for refined images, another for real)
        print('pre-training the discriminator network %d times...' % cfg.r_pretrain)

        self.D.train()
        self.R.eval()
        for index in range(cfg.d_pretrain):
            real_image_batch, _ = self.real_loader.__iter__().next()
            real_image_batch = Variable(real_image_batch).cuda(cfg.cuda_num)

            syn_image_batch, _ = self.syn_train_loader.__iter__().next()
            syn_image_batch = Variable(syn_image_batch).cuda(cfg.cuda_num)

            assert real_image_batch.size(0) == syn_image_batch.size(0)

            # ============ real image D ====================================================
            # self.D.train()
            d_real_pred = self.D(real_image_batch).view(-1, 2)

            d_real_y = Variable(torch.zeros(d_real_pred.size(0)).type(torch.LongTensor)).cuda(cfg.cuda_num)
            d_ref_y = Variable(torch.ones(d_real_pred.size(0)).type(torch.LongTensor)).cuda(cfg.cuda_num)

            acc_real = calc_acc(d_real_pred, 'real')
            d_loss_real = self.local_adversarial_loss(d_real_pred, d_real_y)
            # d_loss_real = torch.div(d_loss_real, cfg.batch_size)

            # ============ syn image D ====================================================
            # self.R.eval()
            ref_image_batch = self.R(syn_image_batch)

            # self.D.train()
            d_ref_pred = self.D(ref_image_batch).view(-1, 2)

            acc_ref = calc_acc(d_ref_pred, 'refine')
            d_loss_ref = self.local_adversarial_loss(d_ref_pred, d_ref_y)
            # d_loss_ref = torch.div(d_loss_ref, cfg.batch_size)

            d_loss = d_loss_real + d_loss_ref
            self.opt_D.zero_grad()
            d_loss.backward()
            self.opt_D.step()

            if (index % cfg.d_pre_per == 0) or (index == cfg.d_pretrain - 1):
                print('[%d/%d] (D)d_loss:%f  acc_real:%.2f%% acc_ref:%.2f%%'
                      % (index, cfg.d_pretrain, d_loss.data[0], acc_real, acc_ref))

        print('Save D_pre to models/D_pre.pkl')
        torch.save(self.D.state_dict(), 'models/D_pre.pkl')
CosineEmbeddingCriterion.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        input1, input2 = input[0], input[1]

        # keep backward compatibility
        if self.buffer is None:
            self.buffer = input1.new()
            self.w1 = input1.new()
            self.w22 = input1.new()
            self.w = input1.new()
            self.w32 = input1.new()
            self._outputs = input1.new()

            # comparison operators behave differently from cuda/c implementations
            # TODO: verify name
            if input1.type() == 'torch.cuda.FloatTensor':
                self._idx = torch.cuda.ByteTensor()
            else:
                self._idx = torch.ByteTensor()

        torch.mul(input1, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w1)

        epsilon = 1e-12
        torch.mul(input1, input1, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w22).add_(epsilon)
        # self._outputs is also used as a temporary buffer
        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w32).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].mul_(-1).add_(1)

        self.output = self._outputs.sum()

        if self.sizeAverage:
            self.output = self.output / y.size(0)

        return self.output
Euclidean.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if self.gradInput is None:
            return

        if self._div is None:
            self._div = input.new()
        if self._output is None:
            self._output = self.output.new()
        if self._gradOutput is None:
            self._gradOutput = input.new()
        if self._expand3 is None:
            self._expand3 = input.new()

        if not self.fastBackward:
            self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * (w_j - x)     x - w_j
        ---- = ---------------- = -------
         dx    2 || w_j - x ||      y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(0.0000001)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(gradOutput, self._output, out=self._div)
        assert input.dim() == 2
        batchSize = input.size(0)

        self._div.resize_(batchSize, 1, outputSize)
        self._expand3 = self._div.expand(batchSize, inputSize, outputSize)

        if torch.typename(input) == 'torch.cuda.FloatTensor':
            self._repeat2.resize_as_(self._expand3).copy_(self._expand3)
            self._repeat2.mul_(self._repeat)
        else:
            torch.mul(self._repeat, self._expand3, out=self._repeat2)

        torch.sum(self._repeat2, 2, out=self.gradInput)
        self.gradInput.resize_as_(input)

        return self.gradInput
WeightedEuclidean.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if self.gradInput is None:
            return

        if self._div is None:
            self._div = input.new()
        if self._output is None:
            self._output = self.output.new()
        if self._expand4 is None:
            self._expand4 = input.new()
        if self._gradOutput is None:
            self._gradOutput = input.new()

        if not self.fastBackward:
            self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * c_j * c_j * (w_j - x)   c_j * c_j * (x - w_j)
        ---- = -------------------------- = ---------------------
         dx     2 || c_j * (w_j - x) ||              y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(1e-7)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(gradOutput, self._output, out=self._div)
        if input.dim() == 1:
            self._div.resize_(1, outputSize)
            self._expand4 = self._div.expand_as(self.weight)

            if torch.type(input) == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
            else:
                self._repeat2.mul_(self._repeat, self._expand4)

            self._repeat2.mul_(self.diagCov)
            torch.sum(self._repeat2, 1, out=self.gradInput)
            self.gradInput.resize_as_(input)
        elif input.dim() == 2:
            batchSize = input.size(0)

            self._div.resize_(batchSize, 1, outputSize)
            self._expand4 = self._div.expand(batchSize, inputSize, outputSize)

            if input.type() == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
                self._repeat2.mul_(self._repeat3)
            else:
                torch.mul(self._repeat, self._expand4, out=self._repeat2)
                self._repeat2.mul_(self._expand3)

            torch.sum(self._repeat2, 2, out=self.gradInput)
            self.gradInput.resize_as_(input)
        else:
            raise RuntimeError("1D or 2D input expected")

        return self.gradInput
CosineEmbeddingCriterion.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        input1, input2 = input[0], input[1]

        # keep backward compatibility
        if self.buffer is None:
            self.buffer = input1.new()
            self.w1 = input1.new()
            self.w22 = input1.new()
            self.w = input1.new()
            self.w32 = input1.new()
            self._outputs = input1.new()

            # comparison operators behave differently from cuda/c implementations
            # TODO: verify name
            if input1.type() == 'torch.cuda.FloatTensor':
                self._idx = torch.cuda.ByteTensor()
            else:
                self._idx = torch.ByteTensor()

        torch.mul(input1, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w22, keepdim=True).add_(epsilon)
        # self._outputs is also used as a temporary buffer
        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w32, keepdim=True).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].mul_(-1).add_(1)

        self.output = self._outputs.sum()

        if self.sizeAverage:
            self.output = self.output / y.size(0)

        return self.output
Euclidean.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if self.gradInput is None:
            return

        if self._div is None:
            self._div = input.new()
        if self._output is None:
            self._output = self.output.new()
        if self._gradOutput is None:
            self._gradOutput = input.new()
        if self._expand3 is None:
            self._expand3 = input.new()

        if not self.fastBackward:
            self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * (w_j - x)     x - w_j
        ---- = ---------------- = -------
         dx    2 || w_j - x ||      y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(0.0000001)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(gradOutput, self._output, out=self._div)
        assert input.dim() == 2
        batchSize = input.size(0)

        self._div.resize_(batchSize, 1, outputSize)
        self._expand3 = self._div.expand(batchSize, inputSize, outputSize)

        if torch.typename(input) == 'torch.cuda.FloatTensor':
            self._repeat2.resize_as_(self._expand3).copy_(self._expand3)
            self._repeat2.mul_(self._repeat)
        else:
            torch.mul(self._repeat, self._expand3, out=self._repeat2)

        torch.sum(self._repeat2, 2, True, out=self.gradInput)
        self.gradInput.resize_as_(input)

        return self.gradInput
WeightedEuclidean.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if self.gradInput is None:
            return

        if self._div is None:
            self._div = input.new()
        if self._output is None:
            self._output = self.output.new()
        if self._expand4 is None:
            self._expand4 = input.new()
        if self._gradOutput is None:
            self._gradOutput = input.new()

        if not self.fastBackward:
            self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * c_j * c_j * (w_j - x)   c_j * c_j * (x - w_j)
        ---- = -------------------------- = ---------------------
         dx     2 || c_j * (w_j - x) ||              y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(1e-7)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(gradOutput, self._output, out=self._div)
        if input.dim() == 1:
            self._div.resize_(1, outputSize)
            self._expand4 = self._div.expand_as(self.weight)

            if torch.type(input) == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
            else:
                self._repeat2.mul_(self._repeat, self._expand4)

            self._repeat2.mul_(self.diagCov)
            torch.sum(self._repeat2, 1, True, out=self.gradInput)
            self.gradInput.resize_as_(input)
        elif input.dim() == 2:
            batchSize = input.size(0)

            self._div.resize_(batchSize, 1, outputSize)
            self._expand4 = self._div.expand(batchSize, inputSize, outputSize)

            if input.type() == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
                self._repeat2.mul_(self._repeat3)
            else:
                torch.mul(self._repeat, self._expand4, out=self._repeat2)
                self._repeat2.mul_(self._expand3)

            torch.sum(self._repeat2, 2, True, out=self.gradInput)
            self.gradInput.resize_as_(input)
        else:
            raise RuntimeError("1D or 2D input expected")

        return self.gradInput
loss.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(ctx, input1, input2, y, margin, size_average):
        ctx.margin = margin
        ctx.size_average = size_average
        ctx.w1 = input1.new()
        ctx.w22 = input1.new()
        ctx.w = input1.new()
        ctx.w32 = input1.new()
        ctx._outputs = input1.new()

        _idx = input1.new().byte()

        buffer = torch.mul(input1, input2)
        torch.sum(buffer, 1, out=ctx.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=buffer)
        torch.sum(buffer, 1, out=ctx.w22, keepdim=True).add_(epsilon)

        ctx._outputs.resize_as_(ctx.w22).fill_(1)
        torch.div(ctx._outputs, ctx.w22, out=ctx.w22)
        ctx.w.resize_as_(ctx.w22).copy_(ctx.w22)

        torch.mul(input2, input2, out=buffer)
        torch.sum(buffer, 1, out=ctx.w32, keepdim=True).add_(epsilon)
        torch.div(ctx._outputs, ctx.w32, out=ctx.w32)
        ctx.w.mul_(ctx.w32)
        ctx.w.sqrt_()

        torch.mul(ctx.w1, ctx.w, out=ctx._outputs)
        ctx._outputs = ctx._outputs.select(1, 0)

        torch.eq(y, -1, out=_idx)
        ctx._outputs[_idx] = ctx._outputs[_idx].add_(-ctx.margin).clamp_(min=0)
        torch.eq(y, 1, out=_idx)
        ctx._outputs[_idx] = ctx._outputs[_idx].mul_(-1).add_(1)

        output = ctx._outputs.sum()

        if ctx.size_average:
            output = output / y.size(0)

        ctx.save_for_backward(input1, input2, y)
        return input1.new((output,))
CosineEmbeddingCriterion.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        input1, input2 = input[0], input[1]

        # keep backward compatibility
        if self.buffer is None:
            self.buffer = input1.new()
            self.w1 = input1.new()
            self.w22 = input1.new()
            self.w = input1.new()
            self.w32 = input1.new()
            self._outputs = input1.new()

            # comparison operators behave differently from cuda/c implementations
            # TODO: verify name
            if input1.type() == 'torch.cuda.FloatTensor':
                self._idx = torch.cuda.ByteTensor()
            else:
                self._idx = torch.ByteTensor()

        torch.mul(input1, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w22, keepdim=True).add_(epsilon)
        # self._outputs is also used as a temporary buffer
        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w32, keepdim=True).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].mul_(-1).add_(1)

        self.output = self._outputs.sum()

        if self.sizeAverage:
            self.output = self.output / y.size(0)

        return self.output
Euclidean.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if self.gradInput is None:
            return

        if self._div is None:
            self._div = input.new()
        if self._output is None:
            self._output = self.output.new()
        if self._gradOutput is None:
            self._gradOutput = input.new()
        if self._expand3 is None:
            self._expand3 = input.new()

        if not self.fastBackward:
            self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * (w_j - x)     x - w_j
        ---- = ---------------- = -------
         dx    2 || w_j - x ||      y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(0.0000001)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(gradOutput, self._output, out=self._div)
        assert input.dim() == 2
        batchSize = input.size(0)

        self._div.resize_(batchSize, 1, outputSize)
        self._expand3 = self._div.expand(batchSize, inputSize, outputSize)

        if torch.typename(input) == 'torch.cuda.FloatTensor':
            self._repeat2.resize_as_(self._expand3).copy_(self._expand3)
            self._repeat2.mul_(self._repeat)
        else:
            torch.mul(self._repeat, self._expand3, out=self._repeat2)

        torch.sum(self._repeat2, 2, True, out=self.gradInput)
        self.gradInput.resize_as_(input)

        return self.gradInput
WeightedEuclidean.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if self.gradInput is None:
            return

        if self._div is None:
            self._div = input.new()
        if self._output is None:
            self._output = self.output.new()
        if self._expand4 is None:
            self._expand4 = input.new()
        if self._gradOutput is None:
            self._gradOutput = input.new()

        if not self.fastBackward:
            self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * c_j * c_j * (w_j - x)   c_j * c_j * (x - w_j)
        ---- = -------------------------- = ---------------------
         dx     2 || c_j * (w_j - x) ||              y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(1e-7)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(gradOutput, self._output, out=self._div)
        if input.dim() == 1:
            self._div.resize_(1, outputSize)
            self._expand4 = self._div.expand_as(self.weight)

            if torch.type(input) == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
            else:
                self._repeat2.mul_(self._repeat, self._expand4)

            self._repeat2.mul_(self.diagCov)
            torch.sum(self._repeat2, 1, True, out=self.gradInput)
            self.gradInput.resize_as_(input)
        elif input.dim() == 2:
            batchSize = input.size(0)

            self._div.resize_(batchSize, 1, outputSize)
            self._expand4 = self._div.expand(batchSize, inputSize, outputSize)

            if input.type() == 'torch.cuda.FloatTensor':
                self._repeat2.resize_as_(self._expand4).copy_(self._expand4)
                self._repeat2.mul_(self._repeat)
                self._repeat2.mul_(self._repeat3)
            else:
                torch.mul(self._repeat, self._expand4, out=self._repeat2)
                self._repeat2.mul_(self._expand3)

            torch.sum(self._repeat2, 2, True, out=self.gradInput)
            self.gradInput.resize_as_(input)
        else:
            raise RuntimeError("1D or 2D input expected")

        return self.gradInput
decoder.py 文件源码 项目:Semi-supervised_Neural_Network 作者: jibancanyang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def bn_hat_z_layers(self, hat_z_layers, z_pre_layers):
        # TODO: Calculate batchnorm using GPU Tensors.
        assert len(hat_z_layers) == len(z_pre_layers)
        hat_z_layers_normalized = []
        for i, (hat_z, z_pre) in enumerate(zip(hat_z_layers, z_pre_layers)):
            if self.use_cuda:
                ones = Variable(torch.ones(z_pre.size()[0], 1).cuda())
            else:
                ones = Variable(torch.ones(z_pre.size()[0], 1))
            mean = torch.mean(z_pre, 0)
            noise_var = np.random.normal(loc=0.0, scale=1 - 1e-10, size=z_pre.size())
            if self.use_cuda:
                var = np.var(z_pre.data.cpu().numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            else:
                var = np.var(z_pre.data.numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            var = Variable(torch.FloatTensor(var))
            if self.use_cuda:
                hat_z = hat_z.cpu()
                ones = ones.cpu()
                mean = mean.cpu()
            """
            print(z_pre.data.shape, mean.data.shape, ones.data.shape, hat_z.data.shape)
            print("=========== ")
            print(z_pre)
            print(mean)
            print(ones)
            print(hat_z)
            print("=========== ")
            """

            #ones = ones.unsqueeze(1)
            mean = mean.unsqueeze(0)

            #print(z_pre.data.shape, mean.data.shape, ones.data.shape, hat_z.data.shape)
            tempa = hat_z - ones.mm(mean)
            tempb = ones.mm(torch.sqrt(var + 1e-10))
            #hat_z_normalized = torch.div(hat_z - ones.mm(mean), ones.mm(torch.sqrt(var + 1e-10)))
            hat_z_normalized = torch.div(tempa, tempb)
            if self.use_cuda:
                hat_z_normalized = hat_z_normalized.cuda()
            hat_z_layers_normalized.append(hat_z_normalized)
        return hat_z_layers_normalized
sorting_task.py 文件源码 项目:neural-combinatorial-rl-pytorch 作者: pemami4911 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def reward(sample_solution, USE_CUDA=False):
    """
    The reward for the sorting task is defined as the
    length of the longest sorted consecutive subsequence.

    Input sequences must all be the same length.

    Example: 

    input       | output
    ====================
    [1 4 3 5 2] | [5 1 2 3 4]

    The output gets a reward of 4/5, or 0.8

    The range is [1/sourceL, 1]

    Args:
        sample_solution: list of len sourceL of [batch_size]
        Tensors
    Returns:
        [batch_size] containing trajectory rewards
    """
    batch_size = sample_solution[0].size(0)
    sourceL = len(sample_solution)

    longest = Variable(torch.ones(batch_size), requires_grad=False)
    current = Variable(torch.ones(batch_size), requires_grad=False)

    if USE_CUDA:
        longest = longest.cuda()
        current = current.cuda()

    for i in range(1, sourceL):
        # compare solution[i-1] < solution[i] 
        res = torch.lt(sample_solution[i-1], sample_solution[i]) 
        # if res[i,j] == 1, increment length of current sorted subsequence
        current += res.float()  
        # else, reset current to 1
        current[torch.eq(res, 0)] = 1
        #current[torch.eq(res, 0)] -= 1
        # if, for any, current > longest, update longest
        mask = torch.gt(current, longest)
        longest[mask] = current[mask]
    return -torch.div(longest, sourceL)
loss.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def forward(ctx, input1, input2, y, margin, size_average):
        ctx.margin = margin
        ctx.size_average = size_average
        ctx.w1 = input1.new()
        ctx.w22 = input1.new()
        ctx.w = input1.new()
        ctx.w32 = input1.new()
        ctx._outputs = input1.new()

        _idx = input1.new().byte()

        buffer = torch.mul(input1, input2)
        torch.sum(buffer, 1, out=ctx.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=buffer)
        torch.sum(buffer, 1, out=ctx.w22, keepdim=True).add_(epsilon)

        ctx._outputs.resize_as_(ctx.w22).fill_(1)
        torch.div(ctx._outputs, ctx.w22, out=ctx.w22)
        ctx.w.resize_as_(ctx.w22).copy_(ctx.w22)

        torch.mul(input2, input2, out=buffer)
        torch.sum(buffer, 1, out=ctx.w32, keepdim=True).add_(epsilon)
        torch.div(ctx._outputs, ctx.w32, out=ctx.w32)
        ctx.w.mul_(ctx.w32)
        ctx.w.sqrt_()

        torch.mul(ctx.w1, ctx.w, out=ctx._outputs)
        ctx._outputs = ctx._outputs.select(1, 0)

        torch.eq(y, -1, out=_idx)
        ctx._outputs[_idx] = ctx._outputs[_idx].add_(-ctx.margin).clamp_(min=0)
        torch.eq(y, 1, out=_idx)
        ctx._outputs[_idx] = ctx._outputs[_idx].mul_(-1).add_(1)

        output = ctx._outputs.sum()

        if ctx.size_average:
            output = output / y.size(0)

        ctx.save_for_backward(input1, input2, y)
        return input1.new((output,))
CosineEmbeddingCriterion.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def updateOutput(self, input, y):
        input1, input2 = input[0], input[1]

        # keep backward compatibility
        if self.buffer is None:
            self.buffer = input1.new()
            self.w1 = input1.new()
            self.w22 = input1.new()
            self.w = input1.new()
            self.w32 = input1.new()
            self._outputs = input1.new()

            # comparison operators behave differently from cuda/c implementations
            # TODO: verify name
            if input1.type() == 'torch.cuda.FloatTensor':
                self._idx = torch.cuda.ByteTensor()
            else:
                self._idx = torch.ByteTensor()

        torch.mul(input1, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w22, keepdim=True).add_(epsilon)
        # self._outputs is also used as a temporary buffer
        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=self.buffer)
        torch.sum(self.buffer, 1, out=self.w32, keepdim=True).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=self._idx)
        self._outputs[self._idx] = self._outputs[self._idx].mul_(-1).add_(1)

        self.output = self._outputs.sum()

        if self.sizeAverage:
            self.output = self.output / y.size(0)

        return self.output


问题


面经


文章

微信
公众号

扫码关注公众号