python类div()的实例源码

train.py 文件源码 项目:speed 作者: keon 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def validate(models, dataset, arg, cuda=False):
    criterion = nn.MSELoss()
    losses = []
    batcher = dataset.get_batcher(shuffle=True, augment=False)
    for b, (x, y) in enumerate(batcher, 1):
        x = V(th.from_numpy(x).float()).cuda()
        y = V(th.from_numpy(y).float()).cuda()
        # Ensemble average
        logit = None
        for model, _ in models:
            model.eval()
            logit = model(x) if logit is None else logit + model(x)
        logit = th.div(logit, len(models))
        loss = criterion(logit, y)
        losses.append(loss.data[0])
    return np.mean(losses)
predict.py 文件源码 项目:speed 作者: keon 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def predict(models, dataset, arg, cuda=False):
    prediction_file = open('save/predictions.txt', 'w')
    batcher = dataset.get_batcher(shuffle=False, augment=False)
    for b, (x, _) in enumerate(batcher, 1):
        x = V(th.from_numpy(x).float()).cuda()
        # Ensemble average
        logit = None
        for model, _ in models:
            model.eval()
            logit = model(x) if logit is None else logit + model(x)
        logit = th.div(logit, len(models))
        prediction = logit.cpu().data[0][0]
        prediction_file.write('%s\n' % prediction)
        if arg.verbose and b % 100 == 0:
            print('[predict] [b]:%s - prediction: %s' % (b, prediction))
    # prediction_file.close()
decoder.py 文件源码 项目:ladder 作者: abhiskk 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def bn_hat_z_layers(self, hat_z_layers, z_pre_layers):
        # TODO: Calculate batchnorm using GPU Tensors.
        assert len(hat_z_layers) == len(z_pre_layers)
        hat_z_layers_normalized = []
        for i, (hat_z, z_pre) in enumerate(zip(hat_z_layers, z_pre_layers)):
            if self.use_cuda:
                ones = Variable(torch.ones(z_pre.size()[0], 1).cuda())
            else:
                ones = Variable(torch.ones(z_pre.size()[0], 1))
            mean = torch.mean(z_pre, 0)
            noise_var = np.random.normal(loc=0.0, scale=1 - 1e-10, size=z_pre.size())
            if self.use_cuda:
                var = np.var(z_pre.data.cpu().numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            else:
                var = np.var(z_pre.data.numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            var = Variable(torch.FloatTensor(var))
            if self.use_cuda:
                hat_z = hat_z.cpu()
                ones = ones.cpu()
                mean = mean.cpu()
            hat_z_normalized = torch.div(hat_z - ones.mm(mean), ones.mm(torch.sqrt(var + 1e-10)))
            if self.use_cuda:
                hat_z_normalized = hat_z_normalized.cuda()
            hat_z_layers_normalized.append(hat_z_normalized)
        return hat_z_layers_normalized
train_kv_mm.py 文件源码 项目:MemNN 作者: berlino 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train(epoch): 
    for e_ in range(epoch):
    if (e_ + 1) % 10 == 0:
            adjust_learning_rate(optimizer, e_)
        cnt = 0
        loss = Variable(torch.Tensor([0]))
        for i_q, i_k, i_v, i_cand, i_a in zip(train_q, train_key,train_value, train_cand, train_a):
            cnt += 1
            i_q = i_q.unsqueeze(0) # add dimension
            probs = model.forward(i_q, i_k, i_v,i_cand)
            i_a = Variable(i_a)
            curr_loss = loss_function(probs, i_a)
            loss = torch.add(loss, torch.div(curr_loss, config.batch_size)) 

            # naive batch implemetation, the lr is divided by batch size
            if cnt % config.batch_size == 0:
                print "Training loss", loss.data.sum()
                loss.backward()
                optimizer.step()
                loss = Variable(torch.Tensor([0]))
                model.zero_grad()
            if cnt % config.valid_every == 0:
                print "Accuracy:",eval()
train_lstm.py 文件源码 项目:MemNN 作者: berlino 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def train(epoch): 
    for e_ in range(epoch):
    if (e_ + 1) % 10 == 0:
            adjust_learning_rate(optimizer, e_)
        cnt = 0
        loss = Variable(torch.Tensor([0]))
        for i_q, i_w, i_e_p, i_a in zip(train_q, train_w, train_e_p, train_a):
            cnt += 1
            i_q = i_q.unsqueeze(0) # add dimension
            probs = model.forward(i_q, i_w, i_e_p)
            i_a = Variable(i_a)
            curr_loss = loss_function(probs, i_a)
            loss = torch.add(loss, torch.div(curr_loss, config.batch_size)) 

            # naive batch implemetation, the lr is divided by batch size
            if cnt % config.batch_size == 0:
                print "Training loss", loss.data.sum()
                loss.backward()
                optimizer.step()
                loss = Variable(torch.Tensor([0]))
                model.zero_grad()
            if cnt % config.valid_every == 0:
                print "Accuracy:",eval()
Normalize.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 61 收藏 0 点赞 0 评论 0
def updateOutput(self, input):
        assert input.dim() == 2
        input_size = input.size()

        self._output = self._output or input.new()
        self.norm = self.norm or input.new()
        self.buffer = self.buffer or input.new()

        self._output.resize_as_(input)

        # specialization for the infinity norm
        if self.p == float('inf'):
            if not self._indices:
                self._indices = torch.cuda.FloatTensor() if torch.typename(self.output) == 'torch.cuda.FloatTensor' \
                    else torch.LongTensor()

            torch.abs(self.buffer, input)
            torch.max(self.norm, self._indices, self.buffer, 1)
            self.norm.add_(self.eps)
        else:
            self.normp = self.normp or input.new()
            if self.p % 2 != 0:
                torch.abs(self.buffer, input).pow_(self.p)
            else:
                torch.pow(self.buffer, input, self.p)

            torch.sum(self.normp, self.buffer, 1).add_(self.eps)
            torch.pow(self.norm, self.normp, 1./self.p)

        torch.div(self._output, input, self.norm.view(-1, 1).expand_as(input))

        self.output = self._output.view(input_size)
        return self.output
Euclidean.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def updateGradInput(self, input, gradOutput):
        if not self.gradInput:
           return

        self._div = self._div or input.new()
        self._output = self._output or self.output.new()
        self._gradOutput = self._gradOutput or input.new()
        self._expand3 = self._expand3 or input.new()

        if not self.fastBackward:
           self.updateOutput(input)

        inputSize, outputSize = self.weight.size(0), self.weight.size(1)

        """
        dy_j   -2 * (w_j - x)     x - w_j
        ---- = ---------------- = -------
         dx    2 || w_j - x ||      y_j
        """

        # to prevent div by zero (NaN) bugs
        self._output.resize_as_(self.output).copy_(self.output).add_(0.0000001)
        self._view(self._gradOutput, gradOutput, gradOutput.size())
        torch.div(self._div, gradOutput, self._output)
        assert input.dim() == 2
        batchSize = input.size(0)

        self._div.resize_(batchSize, 1, outputSize)
        self._expand3 = self._div.expand(batchSize, inputSize, outputSize)

        if torch.typename(input) == 'torch.cuda.FloatTensor':
            self._repeat2.resize_as_(self._expand3).copy_(self._expand3)
            self._repeat2.mul_(self._repeat)
        else:
            torch.mul(self._repeat2, self._repeat, self._expand3)


        torch.sum(self.gradInput, self._repeat2, 2)
        self.gradInput.resize_as_(input)

        return self.gradInput
loss.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def forward(self, input1, input2, y):
        self.w1 = input1.new()
        self.w22 = input1.new()
        self.w = input1.new()
        self.w32 = input1.new()
        self._outputs = input1.new()

        _idx = input1.new().byte()

        buffer = torch.mul(input1, input2)
        torch.sum(buffer, 1, out=self.w1)

        epsilon = 1e-12
        torch.mul(input1, input1, out=buffer)
        torch.sum(buffer, 1, out=self.w22).add_(epsilon)

        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=buffer)
        torch.sum(buffer, 1, out=self.w32).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].mul_(-1).add_(1)

        output = self._outputs.sum()

        if self.size_average:
            output = output / y.size(0)

        self.save_for_backward(input1, input2, y)
        return input1.new((output,))
Normalize.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def updateOutput(self, input):
        assert input.dim() == 2
        input_size = input.size()

        if self._output is None:
            self._output = input.new()
        if self.norm is None:
            self.norm = input.new()
        if self.buffer is None:
            self.buffer = input.new()

        self._output.resize_as_(input)

        # specialization for the infinity norm
        if self.p == float('inf'):
            if not self._indices:
                self._indices = torch.cuda.FloatTensor() if torch.typename(self.output) == 'torch.cuda.FloatTensor' \
                    else torch.LongTensor()

            torch.abs(input, out=self.buffer)
            torch.max(self._indices, self.buffer, 1, out=self.norm)
            self.norm.add_(self.eps)
        else:
            if self.normp is None:
                self.normp = input.new()
            if self.p % 2 != 0:
                torch.abs(input, out=self.buffer).pow_(self.p)
            else:
                torch.pow(input, self.p, out=self.buffer)

            torch.sum(self.buffer, 1, out=self.normp).add_(self.eps)
            torch.pow(self.normp, 1. / self.p, out=self.norm)

        torch.div(input, self.norm.view(-1, 1).expand_as(input), out=self._output)

        self.output = self._output.view(input_size)
        return self.output
loss.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def forward(self, input1, input2, y):
        self.w1 = input1.new()
        self.w22 = input1.new()
        self.w = input1.new()
        self.w32 = input1.new()
        self._outputs = input1.new()

        _idx = input1.new().byte()

        buffer = torch.mul(input1, input2)
        torch.sum(buffer, 1, out=self.w1, keepdim=True)

        epsilon = 1e-12
        torch.mul(input1, input1, out=buffer)
        torch.sum(buffer, 1, out=self.w22, keepdim=True).add_(epsilon)

        self._outputs.resize_as_(self.w22).fill_(1)
        torch.div(self._outputs, self.w22, out=self.w22)
        self.w.resize_as_(self.w22).copy_(self.w22)

        torch.mul(input2, input2, out=buffer)
        torch.sum(buffer, 1, out=self.w32, keepdim=True).add_(epsilon)
        torch.div(self._outputs, self.w32, out=self.w32)
        self.w.mul_(self.w32)
        self.w.sqrt_()

        torch.mul(self.w1, self.w, out=self._outputs)
        self._outputs = self._outputs.select(1, 0)

        torch.eq(y, -1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].add_(-self.margin).clamp_(min=0)
        torch.eq(y, 1, out=_idx)
        self._outputs[_idx] = self._outputs[_idx].mul_(-1).add_(1)

        output = self._outputs.sum()

        if self.size_average:
            output = output / y.size(0)

        self.save_for_backward(input1, input2, y)
        return input1.new((output,))
Normalize.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def updateOutput(self, input):
        assert input.dim() == 2
        input_size = input.size()

        if self._output is None:
            self._output = input.new()
        if self.norm is None:
            self.norm = input.new()
        if self.buffer is None:
            self.buffer = input.new()

        self._output.resize_as_(input)

        # specialization for the infinity norm
        if self.p == float('inf'):
            if not self._indices:
                self._indices = torch.cuda.FloatTensor() if torch.typename(self.output) == 'torch.cuda.FloatTensor' \
                    else torch.LongTensor()

            torch.abs(input, out=self.buffer)
            torch.max(self._indices, self.buffer, 1, out=self.norm, keepdim=True)
            self.norm.add_(self.eps)
        else:
            if self.normp is None:
                self.normp = input.new()
            if self.p % 2 != 0:
                torch.abs(input, out=self.buffer).pow_(self.p)
            else:
                torch.pow(input, self.p, out=self.buffer)

            torch.sum(self.buffer, 1, out=self.normp, keepdim=True).add_(self.eps)
            torch.pow(self.normp, 1. / self.p, out=self.norm)

        torch.div(input, self.norm.view(-1, 1).expand_as(input), out=self._output)

        self.output = self._output.view(input_size)
        return self.output
lstm_attention.py 文件源码 项目:pytorch-seq2seq 作者: rowanz 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def forward(self, dec_state, context, mask=None):
        """
        :param dec_state:  batch x dec_dim
        :param context: batch x T x enc_dim
        :return: Weighted context, batch x enc_dim
                 Alpha weights (viz), batch x T
        """
        batch, source_l, enc_dim = context.size()
        assert enc_dim == self.enc_dim

        # W*s over the entire batch (batch, attn_dim)
        dec_contrib = self.decoder_in(dec_state)

        # W*h over the entire length & batch (batch, source_l, attn_dim)
        enc_contribs = self.encoder_in(
            context.view(-1, self.enc_dim)).view(batch, source_l, self.attn_dim)

        # tanh( Wh*hj + Ws s_{i-1} )     (batch, source_l, dim)
        pre_attn = F.tanh(enc_contribs + dec_contrib.unsqueeze(1).expand_as(enc_contribs))

        # v^T*pre_attn for all batches/lengths (batch, source_l)
        energy = self.att_linear(pre_attn.view(-1, self.attn_dim)).view(batch, source_l)

        # Apply the mask. (Might be a better way to do this)
        if mask is not None:
            shift = energy.max(1)[0]
            energy_exp = (energy - shift.expand_as(energy)).exp() * mask
            alpha = torch.div(energy_exp, energy_exp.sum(1).expand_as(energy_exp))
        else:
            alpha = F.softmax(energy)

        weighted_context = torch.bmm(alpha.unsqueeze(1), context).squeeze(1)  # (batch, dim)
        return weighted_context, alpha
main.py 文件源码 项目:PoseNet 作者: bellatoris 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def rotation_error(input, target):
    x1 = torch.norm(input, dim=1)
    x2 = torch.norm(target, dim=1)

    x1 = torch.div(input, torch.stack((x1, x1, x1, x1), dim=1))
    x2 = torch.div(target, torch.stack((x2, x2, x2, x2), dim=1))
    d = torch.abs(torch.sum(x1 * x2, dim=1))
    theta = 2 * torch.acos(d) * 180/math.pi
    theta = torch.mean(theta)

    return theta
main.py 文件源码 项目:PoseNet 作者: bellatoris 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def rotation_error(input, target):
    """Gets cosine distance between input and target """
    x1 = torch.norm(input, dim=1)
    x2 = torch.norm(target, dim=1)

    x1 = torch.div(input, torch.stack((x1, x1, x1, x1), dim=1))
    x2 = torch.div(target, torch.stack((x2, x2, x2, x2), dim=1))
    d = torch.abs(torch.sum(x1 * x2, dim=1))
    theta = 2 * torch.acos(d) * 180/math.pi
    theta = torch.mean(theta)

    return theta
RegNet.py 文件源码 项目:PoseNet 作者: bellatoris 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, inpt):
        batch_size = self.batch_size
        f0 = self.features(inpt[:, 0])
        f0 = f0.view(batch_size, -1)

        f1 = self.features(inpt[:, 1])
        f1 = f1.view(batch_size, -1)

        # f2 = self.features(inpt[:, 2])
        # f2 = f2.view(batch_size, -1)
        #
        # f3 = self.features(inpt[:, 3])
        # f3 = f3.view(batch_size, -1)
        #
        # f4 = self.features(inpt[:, 4])
        # f4 = f4.view(batch_size, -1)
        #
        # f = torch.stack((f0, f1, f2, f3, f4), dim=0).view(self.seq_length, batch_size, -1)

        f = torch.cat((f0, f1), dim=1)

        # _, hn = self.rnn(f, self.hidden)
        # hn = hn[self.gru_layer - 1].view(batch_size, -1)
        # hn = self.relu(hn)
        # hn = self.dropout(hn)
        # hn = self.regressor(hn)
        hn = self.regressor(f)

        trans = self.trans_regressor(hn)

        # trans_norm = torch.norm(trans, dim=1)
        # trans = torch.div(trans, torch.cat((trans_norm, trans_norm, trans_norm), dim=1))

        scale = self.scale_regressor(hn)
        rotation = self.rotation_regressor(hn)

        return trans, scale, rotation
Normalize.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 53 收藏 0 点赞 0 评论 0
def updateOutput(self, input):
        assert input.dim() == 2
        input_size = input.size()

        if self._output is None:
            self._output = input.new()
        if self.norm is None:
            self.norm = input.new()
        if self.buffer is None:
            self.buffer = input.new()

        self._output.resize_as_(input)

        # specialization for the infinity norm
        if self.p == float('inf'):
            if not self._indices:
                self._indices = torch.cuda.FloatTensor() if torch.typename(self.output) == 'torch.cuda.FloatTensor' \
                    else torch.LongTensor()

            torch.abs(input, out=self.buffer)
            torch.max(self._indices, self.buffer, 1, out=self.norm, keepdim=True)
            self.norm.add_(self.eps)
        else:
            if self.normp is None:
                self.normp = input.new()
            if self.p % 2 != 0:
                torch.abs(input, out=self.buffer).pow_(self.p)
            else:
                torch.pow(input, self.p, out=self.buffer)

            torch.sum(self.buffer, 1, out=self.normp, keepdim=True).add_(self.eps)
            torch.pow(self.normp, 1. / self.p, out=self.norm)

        torch.div(input, self.norm.view(-1, 1).expand_as(input), out=self._output)

        self.output = self._output.view(input_size)
        return self.output
model.py 文件源码 项目:facenet_pytorch 作者: liorshk 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def l2_norm(self,input):
        input_size = input.size()
        buffer = torch.pow(input, 2)

        normp = torch.sum(buffer, 1).add_(1e-10)
        norm = torch.sqrt(normp)

        _output = torch.div(input, norm.view(-1, 1).expand_as(input))

        output = _output.view(input_size)

        return output
model.py 文件源码 项目:facenet_pytorch 作者: liorshk 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def l2_norm(self,input):
        input_size = input.size()
        buffer = torch.pow(input, 2)

        normp = torch.sum(buffer, 1).add_(1e-10)
        norm = torch.sqrt(normp)

        _output = torch.div(input, norm.view(-1, 1).expand_as(input))

        output = _output.view(input_size)

        return output
utils.py 文件源码 项目:examples 作者: pytorch 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def normalize_batch(batch):
    # normalize using imagenet mean and std
    mean = batch.data.new(batch.data.size())
    std = batch.data.new(batch.data.size())
    mean[:, 0, :, :] = 0.485
    mean[:, 1, :, :] = 0.456
    mean[:, 2, :, :] = 0.406
    std[:, 0, :, :] = 0.229
    std[:, 1, :, :] = 0.224
    std[:, 2, :, :] = 0.225
    batch = torch.div(batch, 255.0)
    batch -= Variable(mean)
    batch = batch / Variable(std)
    return batch
utils.py 文件源码 项目:scalingscattering 作者: edouardoyallon 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def batch_norm_scattering(x, m,v):
    m=m.expand_as(x)
    v=v.expand_as(x)
    x = torch.div(torch.add(x,-m),v)
    return x
open_face.py 文件源码 项目:iffse 作者: kendricktan 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def forward(self, input):
        x = input

        if x.data.is_cuda and self.gpuDevice != 0:
            x = x.cuda(self.gpuDevice)

        #
        if x.size()[-1] == 128:
            x = self.resize2(self.resize1(x))

        x = self.layer8(self.layer7(self.layer6(self.layer5(
            self.layer4(self.layer3(self.layer2(self.layer1(x))))))))
        x = self.layer13(self.layer12(
            self.layer11(self.layer10(self.layer9(x)))))
        x = self.layer14(x)
        x = self.layer15(x)
        x = self.layer16(x)
        x = self.layer17(x)
        x = self.layer18(x)
        x = self.layer19(x)
        x = self.layer21(x)
        x = self.layer22(x)
        x = x.view((-1, 736))

        x_736 = x

        x = self.layer25(x)
        x_norm = torch.sqrt(torch.sum(x**2, 1) + 1e-6)
        x = torch.div(x, x_norm.view(-1, 1).expand_as(x))

        return (x, x_736)
Normalize.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def updateOutput(self, input):
        assert input.dim() == 2
        input_size = input.size()

        if self._output is None:
            self._output = input.new()
        if self.norm is None:
            self.norm = input.new()
        if self.buffer is None:
            self.buffer = input.new()

        self._output.resize_as_(input)

        # specialization for the infinity norm
        if self.p == float('inf'):
            if not self._indices:
                self._indices = torch.cuda.FloatTensor() if torch.typename(self.output) == 'torch.cuda.FloatTensor' \
                    else torch.LongTensor()

            torch.abs(input, out=self.buffer)
            torch.max(self._indices, self.buffer, 1, out=self.norm, keepdim=True)
            self.norm.add_(self.eps)
        else:
            if self.normp is None:
                self.normp = input.new()
            if self.p % 2 != 0:
                torch.abs(input, out=self.buffer).pow_(self.p)
            else:
                torch.pow(input, self.p, out=self.buffer)

            torch.sum(self.buffer, 1, out=self.normp, keepdim=True).add_(self.eps)
            torch.pow(self.normp, 1. / self.p, out=self.norm)

        torch.div(input, self.norm.view(-1, 1).expand_as(input), out=self._output)

        self.output = self._output.view(input_size)
        return self.output
ops.py 文件源码 项目:repeval_rivercorners 作者: jabalazs 项目源码 文件源码 阅读 59 收藏 0 点赞 0 评论 0
def columnwise_cosine_similarity(matrix1, matrix2):
    """Return the columnwise cosine similarity from matrix1 and matrix2.
    Expect tesor of dimension (batch_size, seq_len, hidden).
    Return tensor of size (batch_size, seq_len) containing the cosine
    similarities."""

    assert matrix1.size() == matrix2.size(), 'matrix sizes do not match'

    # -> (batch_size, seq_len, 1)
    n_m1 = torch.norm(matrix1, 2, 2)
    n_m2 = torch.norm(matrix2, 2, 2)

    # -> (batch_size, seq_len, 1)
    col_norm = torch.mul(n_m1, n_m2)

    # -> (batch_size, seq_len, hidden)
    colprod = torch.mul(matrix1, matrix2)
    # -> (batch_size, seq_len, 1)
    colsum = torch.sum(colprod, 2)

    # -> (batch_size, seq_len, 1)
    cosine_sim = torch.div(colsum, col_norm)

    # -> (batch_size, seq_len)
    cosine_sim = cosine_sim.squeeze()

    return cosine_sim
ops.py 文件源码 项目:repeval_rivercorners 作者: jabalazs 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def full_cosine_similarity(matrix1, matrix2):
    """
    Expect 2 matrices P and Q of dimension (d, n1) and (d, n2) respectively.
    Return a matrix A of dimension (n1, n2) with the result of comparing each
    vector to one another. A[i, j] represents the cosine similarity between
    vectors P[:, i] and Q[:, j].
    """
    n1 = matrix1.size(1)
    n2 = matrix2.size(1)
    d = matrix1.size(0)
    assert d == matrix2.size(0)

    # -> (d, n1, 1)
    t1 = matrix1.view(d, n1, 1)
    # -> (d, n1, n2)
    t1 = t1.repeat(1, 1, n2)

    # -> (d, 1, n2)
    t2 = matrix2.view(d, 1, n2)
    # -> (d, n1, n2)
    t2 = t2.repeat(1, n1, 1).contiguous()

    t1_x_t2 = torch.mul(t1, t2)  # (d, n1, n2)
    dotprod = torch.sum(t1_x_t2, 0).squeeze()  # (n1, n2)

    norm1 = torch.norm(t1, 2, 0)  # (n1, n2)
    norm2 = torch.norm(t2, 2, 0)  # (n1, n2)
    col_norm = torch.mul(norm1, norm2).squeeze()  # (n1, n2)

    return torch.div(dotprod, col_norm)  # (n1, n2)
ops.py 文件源码 项目:repeval_rivercorners 作者: jabalazs 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def batch_full_cosine_similarity(tensor1, tensor2):
    """
    Expect 2 tensors tensor1 and tensor2 of dimension
    (batch_size, seq_len_p, hidden) and (batch_size, seq_len_q, hidden)
    respectively.

    Return a matrix A of dimension (batch_size, seq_len_p, seq_len_q) with the
    result of comparing each matrix to one another. A[k, :, :] represents the
    cosine similarity between matrices P[k, :, :] and Q[k, :, :]. Then
    A_k[i, j] is a scalar representing the cosine similarity between vectors
    P_k[i, :] and Q_k[j, :]
    """
    batch_size = tensor1.size(0)
    seq_len_p = tensor1.size(1)
    seq_len_q = tensor2.size(1)
    hidden = tensor1.size(2)
    assert batch_size == tensor2.size(0)
    assert hidden == tensor2.size(2)

    # -> (batch_size, seq_len_p, 1, hidden)
    t1 = tensor1.unsqueeze(2)
    # -> (batch_size, seq_len_p, seq_len_q, hidden)
    t1 = t1.repeat(1, 1, seq_len_q, 1)

    # -> (batch_size, 1, seq_len_q, hidden)
    t2 = tensor2.unsqueeze(1)
    # -> (batch_size, seq_len_p, seq_len_q, hidden)
    t2 = t2.repeat(1, seq_len_p, 1, 1)

    # -> (batch_size, seq_len_p, seq_len_q, hidden)
    t1_x_t2 = torch.mul(t1, t2)
    # -> (batch_size, seq_len_p, seq_len_q)
    dotprod = torch.sum(t1_x_t2, 3).squeeze(3)

    # norm1, norm2 and col_norm have dim (batch_size, seq_len_p, seq_len_q)
    norm1 = torch.norm(t1, 2, 3)
    norm2 = torch.norm(t2, 2, 3)
    col_norm = torch.mul(norm1, norm2).squeeze(3)

    return torch.div(dotprod, col_norm)  # (batch_size, seq_len_p, seq_len_q)
model.py 文件源码 项目:vsepp 作者: fartashf 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def l2norm(X):
    """L2-normalize columns of X
    """
    norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
    X = torch.div(X, norm)
    return X
model_split.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def forward(self, input_n, hidden, phi, nh):
        hidden = torch.cat((hidden, input_n), 2)
        # Aggregate reresentations
        h_conv = torch.div(torch.bmm(phi, hidden), nh)
        hidden = hidden.view(-1, self.hidden_size + self.input_size)
        h_conv = h_conv.view(-1, self.hidden_size + self.input_size)
        # h_conv has shape (batch_size, n, hidden_size + input_size)
        m1 = (torch.mm(hidden, self.W1)
              .view(self.batch_size, -1, self.hidden_size))
        m2 = (torch.mm(h_conv, self.W2)
              .view(self.batch_size, -1, self.hidden_size))
        m3 = self.b.unsqueeze(0).unsqueeze(1).expand_as(m2)
        hidden = torch.sigmoid(m1 + m2 + m3)
        return hidden
Split.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def forward(self, input_n, hidden, phi, nh):
        hidden = torch.cat((hidden, input_n), 2)
        # Aggregate reresentations
        h_conv = torch.div(torch.bmm(phi, hidden), nh)
        hidden = hidden.view(-1, self.hidden_size + self.input_size)
        h_conv = h_conv.view(-1, self.hidden_size + self.input_size)
        # h_conv has shape (batch_size, n, hidden_size + input_size)
        m1 = (torch.mm(hidden, self.W1)
              .view(self.batch_size, -1, self.hidden_size))
        m2 = (torch.mm(h_conv, self.W2)
              .view(self.batch_size, -1, self.hidden_size))
        m3 = self.b.unsqueeze(0).unsqueeze(1).expand_as(m2)
        hidden = torch.sigmoid(m1 + m2 + m3)
        return hidden
Split.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def forward(self, input_n, hidden, phi, nh):
        hidden = torch.cat((hidden, input_n), 2)
        # Aggregate reresentations
        h_conv = torch.div(torch.bmm(phi, hidden), nh)
        hidden = hidden.view(-1, self.hidden_size + self.input_size + 2)
        h_conv = h_conv.view(-1, self.hidden_size + self.input_size + 2)
        # h_conv has shape (batch_size, n, hidden_size + input_size)
        m1 = (torch.mm(hidden, self.W1)
              .view(self.batch_size, -1, self.hidden_size))
        m2 = (torch.mm(h_conv, self.W2)
              .view(self.batch_size, -1, self.hidden_size))
        m3 = self.b.unsqueeze(0).unsqueeze(1).expand_as(m2)
        hidden = torch.sigmoid(m1 + m2 + m3)
        return hidden
Split.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def forward(self, input_n, hidden, phi, nh):
        self.batch_size = input_n.size()[0]
        hidden = torch.cat((hidden, input_n), 2)
        # Aggregate reresentations
        h_conv = torch.div(torch.bmm(phi, hidden), nh)
        hidden = hidden.view(-1, self.hidden_size + self.input_size)
        h_conv = h_conv.view(-1, self.hidden_size + self.input_size)
        # h_conv has shape (batch_size, n, hidden_size + input_size)
        m1 = (torch.mm(hidden, self.W1)
              .view(self.batch_size, -1, self.hidden_size))
        m2 = (torch.mm(h_conv, self.W2)
              .view(self.batch_size, -1, self.hidden_size))
        m3 = self.b.unsqueeze(0).unsqueeze(1).expand_as(m2)
        hidden = torch.sigmoid(m1 + m2 + m3)
        return hidden


问题


面经


文章

微信
公众号

扫码关注公众号