python类ByteTensor()的实例源码

main.py 文件源码 项目:SeqGAN-PyTorch 作者: ZiJianZhao 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, prob, target, reward):
        """
        Args:
            prob: (N, C), torch Variable 
            target : (N, ), torch Variable
            reward : (N, ), torch Variable
        """
        N = target.size(0)
        C = prob.size(1)
        one_hot = torch.zeros((N, C))
        if prob.is_cuda:
            one_hot = one_hot.cuda()
        one_hot.scatter_(1, target.data.view((-1,1)), 1)
        one_hot = one_hot.type(torch.ByteTensor)
        one_hot = Variable(one_hot)
        if prob.is_cuda:
            one_hot = one_hot.cuda()
        loss = torch.masked_select(prob, one_hot)
        loss = loss * reward
        loss =  -torch.sum(loss)
        return loss
triplet_mnist_loader.py 文件源码 项目:triplet-network-pytorch 作者: andreasveit 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def read_image_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2051
        length = get_int(data[4:8])
        num_rows = get_int(data[8:12])
        num_cols = get_int(data[12:16])
        images = []
        idx = 16
        for l in range(length):
            img = []
            images.append(img)
            for r in range(num_rows):
                row = []
                img.append(row)
                for c in range(num_cols):
                    row.append(parse_byte(data[idx]))
                    idx += 1
        assert len(images) == length
        return torch.ByteTensor(images).view(-1, 28, 28)
test_attention.py 文件源码 项目:OpenNMT-py 作者: OpenNMT 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_masked_global_attention(self):
        source_lengths = torch.IntTensor([7, 3, 5, 2])
        illegal_weights_mask = torch.ByteTensor([
            [0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 1, 1, 1, 1],
            [0, 0, 0, 0, 0, 1, 1],
            [0, 0, 1, 1, 1, 1, 1]])

        batch_size = source_lengths.size(0)
        dim = 20

        context = Variable(torch.randn(batch_size, source_lengths.max(), dim))
        hidden = Variable(torch.randn(batch_size, dim))

        attn = onmt.modules.GlobalAttention(dim)

        _, alignments = attn(hidden, context, context_lengths=source_lengths)
        illegal_weights = alignments.masked_select(illegal_weights_mask)

        self.assertEqual(0.0, illegal_weights.data.sum())
transform.py 文件源码 项目:FCN 作者: zengxianyu 项目源码 文件源码 阅读 57 收藏 0 点赞 0 评论 0
def __call__(self, gray_image):
        size = gray_image.size()
        color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)

        for label in range(1, len(self.cmap)):
            mask = gray_image[0] == label

            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]

        return color_image
loss.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _new_idx(self, input):
        if torch.typename(input) == 'torch.cuda.FloatTensor':
            return torch.cuda.ByteTensor()
        else:
            return torch.ByteTensor()
CosineEmbeddingCriterion.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def type(self, type=None, tensorCache=None):
        if not type:
           return self._type

        self._idx = None
        super(CosineEmbeddingCriterion, self).type(type, tensorCache)
        # comparison operators behave differently from cuda/c implementations
        if type == 'torch.cuda.FloatTensor':
           self._idx = torch.cuda.ByteTensor()
        else:
           self._idx = torch.ByteTensor()

        return self
MaskedSelect.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def __init__(self):
        super(MaskedSelect, self).__init__()
        self._maskIndices = torch.LongTensor()
        self._maskIndexBuffer = torch.LongTensor()
        self._maskIndexBufferCPU = torch.FloatTensor()
        self._gradBuffer = torch.Tensor()
        self._gradMask = torch.ByteTensor()
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_numel(self):
        b = torch.ByteTensor(3, 100, 100)
        self.assertEqual(b.nelement(), 3*100*100)
        self.assertEqual(b.numel(), 3*100*100)
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_element_size(self):
        byte   =   torch.ByteStorage().element_size()
        char   =   torch.CharStorage().element_size()
        short  =  torch.ShortStorage().element_size()
        int    =    torch.IntStorage().element_size()
        long   =   torch.LongStorage().element_size()
        float  =  torch.FloatStorage().element_size()
        double = torch.DoubleStorage().element_size()

        self.assertEqual(byte,   torch.ByteTensor().element_size())
        self.assertEqual(char,   torch.CharTensor().element_size())
        self.assertEqual(short,  torch.ShortTensor().element_size())
        self.assertEqual(int,    torch.IntTensor().element_size())
        self.assertEqual(long,   torch.LongTensor().element_size())
        self.assertEqual(float,  torch.FloatTensor().element_size())
        self.assertEqual(double, torch.DoubleTensor().element_size())

        self.assertGreater(byte, 0)
        self.assertGreater(char, 0)
        self.assertGreater(short, 0)
        self.assertGreater(int, 0)
        self.assertGreater(long, 0)
        self.assertGreater(float, 0)
        self.assertGreater(double, 0)

        # These tests are portable, not necessarily strict for your system.
        self.assertEqual(byte, 1)
        self.assertEqual(char, 1)
        self.assertGreaterEqual(short, 2)
        self.assertGreaterEqual(int, 2)
        self.assertGreaterEqual(int, short)
        self.assertGreaterEqual(long, 4)
        self.assertGreaterEqual(long, int)
        self.assertGreaterEqual(double, float)
boe_encoder_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_forward_does_correct_computation(self):
        encoder = BagOfEmbeddingsEncoder(embedding_dim=2)
        input_tensor = Variable(
                torch.FloatTensor([[[.7, .8], [.1, 1.5], [.3, .6]], [[.5, .3], [1.4, 1.1], [.3, .9]]]))
        mask = Variable(torch.ByteTensor([[1, 1, 1], [1, 1, 0]]))
        encoder_output = encoder(input_tensor, mask)
        assert_almost_equal(encoder_output.data.numpy(),
                            numpy.asarray([[.7 + .1 + .3, .8 + 1.5 + .6], [.5 + 1.4, .3 + 1.1]]))
boe_encoder_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_forward_does_correct_computation_with_average(self):
        encoder = BagOfEmbeddingsEncoder(embedding_dim=2, averaged=True)
        input_tensor = Variable(
                torch.FloatTensor([[[.7, .8], [.1, 1.5], [.3, .6]],
                                   [[.5, .3], [1.4, 1.1], [.3, .9]],
                                   [[.4, .3], [.4, .3], [1.4, 1.7]]]))
        mask = Variable(torch.ByteTensor([[1, 1, 1], [1, 1, 0], [0, 0, 0]]))
        encoder_output = encoder(input_tensor, mask)
        assert_almost_equal(encoder_output.data.numpy(),
                            numpy.asarray([[(.7 + .1 + .3)/3, (.8 + 1.5 + .6)/3],
                                           [(.5 + 1.4)/2, (.3 + 1.1)/2],
                                           [0., 0.]]))
util_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_get_sequence_lengths_from_binary_mask(self):
        binary_mask = torch.ByteTensor([[1, 1, 1, 0, 0, 0],
                                        [1, 1, 0, 0, 0, 0],
                                        [1, 1, 1, 1, 1, 1],
                                        [1, 0, 0, 0, 0, 0]])
        lengths = util.get_lengths_from_binary_sequence_mask(binary_mask)
        numpy.testing.assert_array_equal(lengths.numpy(), numpy.array([3, 2, 6, 1]))
conditional_random_field.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def forward(self,
                inputs: torch.Tensor,
                tags: torch.Tensor,
                mask: torch.ByteTensor = None) -> torch.Tensor:
        """
        Computes the log likelihood.
        """
        # pylint: disable=arguments-differ
        if mask is None:
            mask = torch.autograd.Variable(torch.ones(*tags.size()).long())

        log_denominator = self._input_likelihood(inputs, mask)
        log_numerator = self._joint_likelihood(inputs, tags, mask)

        return torch.sum(log_numerator - log_denominator)
camvid.py 文件源码 项目:inferno 作者: inferno-pytorch 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def label_to_long_tensor(pic):
    label = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
    label = label.view(pic.size[1], pic.size[0], 1)
    label = label.transpose(0, 1).transpose(0, 2).squeeze().contiguous().long()
    return label
torch_utils.py 文件源码 项目:inferno 作者: inferno-pytorch 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def where(condition, if_true, if_false):
    """
    Torch equivalent of numpy.where.

    Parameters
    ----------
    condition : torch.ByteTensor or torch.cuda.ByteTensor or torch.autograd.Variable
        Condition to check.
    if_true : torch.Tensor or torch.cuda.Tensor or torch.autograd.Variable
        Output value if condition is true.
    if_false: torch.Tensor or torch.cuda.Tensor or torch.autograd.Variable
        Output value if condition is false

    Returns
    -------
    torch.Tensor

    Raises
    ------
    AssertionError
        if if_true and if_false are not both variables or both tensors.
    AssertionError
        if if_true and if_false don't have the same datatype.
    """
    if isinstance(if_true, Variable) or isinstance(if_false, Variable):
        assert isinstance(condition, Variable), \
            "Condition must be a variable if either if_true or if_false is a variable."
        assert isinstance(if_false, Variable) and isinstance(if_false, Variable), \
            "Both if_true and if_false must be variables if either is one."
        assert if_true.data.type() == if_false.data.type(), \
            "Type mismatch: {} and {}".format(if_true.data.type(), if_false.data.type())
    else:
        assert not isinstance(condition, Variable), \
            "Condition must not be a variable because neither if_true nor if_false is one."
        # noinspection PyArgumentList
        assert if_true.type() == if_false.type(), \
            "Type mismatch: {} and {}".format(if_true.data.type(), if_false.data.type())
    casted_condition = condition.type_as(if_true)
    output = casted_condition * if_true + (1 - casted_condition) * if_false
    return output
utils.py 文件源码 项目:pytorch-caffe-darknet-convert 作者: marvis 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def image2torch(img):
    width = img.width
    height = img.height
    img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
    img = img.view(height, width, 3).transpose(0,1).transpose(0,2).contiguous()
    img = img.view(1, 3, height, width)
    img = img.float().div(255.0)
    return img
seq2seq.py 文件源码 项目:clevr-iep 作者: facebookresearch 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def reinforce_sample(self, x, max_length=30, temperature=1.0, argmax=False):
    N, T = x.size(0), max_length
    encoded = self.encoder(x)
    y = torch.LongTensor(N, T).fill_(self.NULL)
    done = torch.ByteTensor(N).fill_(0)
    cur_input = Variable(x.data.new(N, 1).fill_(self.START))
    h, c = None, None
    self.multinomial_outputs = []
    self.multinomial_probs = []
    for t in range(T):
      # logprobs is N x 1 x V
      logprobs, h, c = self.decoder(encoded, cur_input, h0=h, c0=c)
      logprobs = logprobs / temperature
      probs = F.softmax(logprobs.view(N, -1)) # Now N x V
      if argmax:
        _, cur_output = probs.max(1)
      else:
        cur_output = probs.multinomial() # Now N x 1
      self.multinomial_outputs.append(cur_output)
      self.multinomial_probs.append(probs)
      cur_output_data = cur_output.data.cpu()
      not_done = logical_not(done)
      y[:, t][not_done] = cur_output_data[not_done]
      done = logical_or(done, cur_output_data.cpu() == self.END)
      cur_input = cur_output
      if done.sum() == N:
        break
    return Variable(y.type_as(x.data))
transforms.py 文件源码 项目:action-detection 作者: yjxiong 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, pic):
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
            img = img.view(pic.size[1], pic.size[0], len(pic.mode))
            # put it from HWC to CHW format
            # yikes, this transpose takes 80% of the loading time/CPU
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
        return img.float().div(255) if self.div else img.float()
CosineEmbeddingCriterion.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def type(self, type=None, tensorCache=None):
        if not type:
            return self._type

        self._idx = None
        super(CosineEmbeddingCriterion, self).type(type, tensorCache)
        # comparison operators behave differently from cuda/c implementations
        if type == 'torch.cuda.FloatTensor':
            self._idx = torch.cuda.ByteTensor()
        else:
            self._idx = torch.ByteTensor()

        return self
MaskedSelect.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self):
        super(MaskedSelect, self).__init__()
        self._maskIndices = torch.LongTensor()
        self._maskIndexBuffer = torch.LongTensor()
        self._maskIndexBufferCPU = torch.FloatTensor()
        self._gradBuffer = torch.Tensor()
        self._gradMask = torch.ByteTensor()


问题


面经


文章

微信
公众号

扫码关注公众号