python类mean()的实例源码

spectral_mixture_gp_regression_test.py 文件源码 项目:gpytorch 作者: jrg365 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def test_spectral_mixture_gp_mean_abs_error():
    gp_model = SpectralMixtureGPModel()

    # Optimize the model
    gp_model.train()
    optimizer = optim.Adam(gp_model.parameters(), lr=0.1)
    optimizer.n_iter = 0

    gpytorch.functions.fastest = False
    for i in range(50):
        optimizer.zero_grad()
        output = gp_model(train_x)
        loss = -gp_model.marginal_log_likelihood(output, train_y)
        loss.backward()
        optimizer.n_iter += 1
        optimizer.step()

    # Test the model
    gp_model.eval()
    gp_model.condition(train_x, train_y)
    test_preds = gp_model(test_x).mean()
    mean_abs_error = torch.mean(torch.abs(test_y - test_preds))

    # The spectral mixture kernel should be trivially able to extrapolate the sine function.
    assert(mean_abs_error.data.squeeze()[0] < 0.05)
kissgp_kronecker_product_regression_test.py 文件源码 项目:gpytorch 作者: jrg365 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_kissgp_gp_mean_abs_error():
    gp_model = GPRegressionModel()

    # Optimize the model
    gp_model.train()
    optimizer = optim.Adam(gp_model.parameters(), lr=0.2)
    optimizer.n_iter = 0
    for i in range(20):
        optimizer.zero_grad()
        output = gp_model(train_x)
        loss = -gp_model.marginal_log_likelihood(output, train_y)
        loss.backward()
        optimizer.n_iter += 1
        optimizer.step()

    # Test the model
    gp_model.eval()
    gp_model.condition(train_x, train_y)
    test_preds = gp_model(test_x).mean()
    mean_abs_error = torch.mean(torch.abs(test_y - test_preds))
    assert(mean_abs_error.data.squeeze()[0] < 0.1)
kissgp_additive_regression_test.py 文件源码 项目:gpytorch 作者: jrg365 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_kissgp_gp_mean_abs_error():
    gp_model = GPRegressionModel()

    # Optimize the model
    gp_model.train()
    optimizer = optim.Adam(gp_model.parameters(), lr=0.2)
    optimizer.n_iter = 0
    for i in range(20):
        optimizer.zero_grad()
        output = gp_model(train_x)
        loss = -gp_model.marginal_log_likelihood(output, train_y)
        loss.backward()
        optimizer.n_iter += 1
        optimizer.step()

    # Test the model
    gp_model.eval()
    gp_model.condition(train_x, train_y)
    test_preds = gp_model(test_x).mean()
    mean_abs_error = torch.mean(torch.abs(test_y - test_preds))
    assert(mean_abs_error.data.squeeze()[0] < 0.1)
kissgp_gp_regression_test.py 文件源码 项目:gpytorch 作者: jrg365 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def test_kissgp_gp_mean_abs_error():
    train_x, train_y, test_x, test_y = make_data()
    gp_model = GPRegressionModel()

    # Optimize the model
    gp_model.train()
    optimizer = optim.Adam(gp_model.parameters(), lr=0.1)
    optimizer.n_iter = 0
    for i in range(25):
        optimizer.zero_grad()
        output = gp_model(train_x)
        loss = -gp_model.marginal_log_likelihood(output, train_y)
        loss.backward()
        optimizer.n_iter += 1
        optimizer.step()

    # Test the model
    gp_model.eval()
    gp_model.condition(train_x, train_y)
    test_preds = gp_model(test_x).mean()
    mean_abs_error = torch.mean(torch.abs(test_y - test_preds))

    assert(mean_abs_error.data.squeeze()[0] < 0.05)
kissgp_gp_regression_test.py 文件源码 项目:gpytorch 作者: jrg365 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_kissgp_gp_mean_abs_error_cuda():
    if torch.cuda.is_available():
        train_x, train_y, test_x, test_y = make_data(cuda=True)
        gp_model = GPRegressionModel().cuda()

        # Optimize the model
        gp_model.train()
        optimizer = optim.Adam(gp_model.parameters(), lr=0.1)
        optimizer.n_iter = 0
        for i in range(25):
            optimizer.zero_grad()
            output = gp_model(train_x)
            loss = -gp_model.marginal_log_likelihood(output, train_y)
            loss.backward()
            optimizer.n_iter += 1
            optimizer.step()

        # Test the model
        gp_model.eval()
        gp_model.condition(train_x, train_y)
        test_preds = gp_model(test_x).mean()
        mean_abs_error = torch.mean(torch.abs(test_y - test_preds))

        assert(mean_abs_error.data.squeeze()[0] < 0.02)
utils.py 文件源码 项目:torchsample 作者: ncullen93 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def th_corrcoef(x):
    """
    mimics np.corrcoef
    """
    # calculate covariance matrix of rows
    mean_x = th.mean(x, 1)
    xm = x.sub(mean_x.expand_as(x))
    c = xm.mm(xm.t())
    c = c / (x.size(1) - 1)

    # normalize covariance matrix
    d = th.diag(c)
    stddev = th.pow(d, 0.5)
    c = c.div(stddev.expand_as(c))
    c = c.div(stddev.expand_as(c).t())

    # clamp between -1 and 1
    c = th.clamp(c, -1.0, 1.0)

    return c
utils.py 文件源码 项目:torchsample 作者: ncullen93 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def th_matrixcorr(x, y):
    """
    return a correlation matrix between
    columns of x and columns of y.

    So, if X.size() == (1000,4) and Y.size() == (1000,5),
    then the result will be of size (4,5) with the
    (i,j) value equal to the pearsonr correlation coeff
    between column i in X and column j in Y
    """
    mean_x = th.mean(x, 0)
    mean_y = th.mean(y, 0)
    xm = x.sub(mean_x.expand_as(x))
    ym = y.sub(mean_y.expand_as(y))
    r_num = xm.t().mm(ym)
    r_den1 = th.norm(xm,2,0)
    r_den2 = th.norm(ym,2,0)
    r_den = r_den1.t().mm(r_den2)
    r_mat = r_num.div(r_den)
    return r_mat
layers.py 文件源码 项目:fast-wavenet.pytorch 作者: dhpollack 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def normalized_cross_correlation(self):
        w = self.weight.view(self.weight.size(0), -1)
        t_norm = torch.norm(w, p=2, dim=1)
        if self.in_channels == 1 & sum(self.kernel_size) == 1:
            ncc = w.squeeze() / torch.norm(self.t0_norm, p=2)
            ncc = ncc - self.start_ncc
            return ncc
        #mean = torch.mean(w, dim=1).unsqueeze(1).expand_as(w)
        mean = torch.mean(w, dim=1).unsqueeze(1) # 0.2 broadcasting
        t_factor = w - mean
        h_product = self.t0_factor * t_factor
        cov = torch.sum(h_product, dim=1) # (w.size(1) - 1)
        # had normalization code commented out
        denom = self.t0_norm * t_norm

        ncc = cov / denom
        ncc = ncc - self.start_ncc
        return ncc
test_legacy_nn.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def test_Dropout(self):
        p = 0.2
        input = torch.Tensor(1000).fill_(1 - p)

        module = nn.Dropout(p)
        output = module.forward(input)
        self.assertLess(abs(output.mean() - (1 - p)), 0.05)
        gradInput = module.backward(input, input)
        self.assertLess(abs(gradInput.mean() - (1 - p)), 0.05)

        module = nn.Dropout(p, True)
        output = module.forward(input.clone())
        self.assertLess(abs(output.mean() - (1 - p)), 0.05)
        gradInput = module.backward(input.clone(), input.clone())
        self.assertLess(abs(gradInput.mean() - (1 - p)), 0.05)

        # Check that these don't raise errors
        module.__repr__()
        str(module)
test_legacy_nn.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_SpatialDropout(self):
        p = 0.2
        b = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        nfeats = 1000
        input = torch.Tensor(b, nfeats, w, h).fill_(1)
        module = nn.SpatialDropout(p)
        module.training()
        output = module.forward(input)
        self.assertLess(abs(output.mean() - (1 - p)), 0.05)
        gradInput = module.backward(input, input)
        self.assertLess(abs(gradInput.mean() - (1 - p)), 0.05)

        # Check that these don't raise errors
        module.__repr__()
        str(module)
test_legacy_nn.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_VolumetricDropout(self):
        p = 0.2
        bsz = random.randint(1, 5)
        t = random.randint(1, 5)
        w = random.randint(1, 5)
        h = random.randint(1, 5)
        nfeats = 1000
        input = torch.Tensor(bsz, nfeats, t, w, h).fill_(1)
        module = nn.VolumetricDropout(p)
        module.training()
        output = module.forward(input)
        self.assertLess(abs(output.mean() - (1 - p)), 0.05)
        gradInput = module.backward(input, input)
        self.assertLess(abs(gradInput.mean() - (1 - p)), 0.05)

        # Check that these don't raise errors
        module.__repr__()
        str(module)
nonlinear.py 文件源码 项目:keita 作者: iwasaki-kenta 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def forward(self, y, weights, mean, std):
        """
        Presents a maximum a-priori objective for a set of predicted means, mixture components,
        and standard deviations to model a given ground-truth 'y'. Modeled using negative log
        likelihood.

        :param y: Non-linear target.
        :param weights: Predicted mixture components.
        :param mean: Predicted mixture means.
        :param std: Predicted mixture standard deviations.
        :return:
        """
        normalization = 1.0 / ((2.0 * math.pi) ** 0.5)
        gaussian_sample = (y.expand_as(mean) - mean) * torch.reciprocal(std)
        gaussian_sample = normalization * torch.reciprocal(std) * torch.exp(-0.5 * gaussian_sample ** 2)

        return -torch.mean(torch.log(torch.sum(weights * gaussian_sample, dim=1)))
test_models.py 文件源码 项目:aorun 作者: ramon-oliveira 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_model_custom_loss():
    x = torch.rand(20, 4)
    y = torch.rand(20, 10)

    model = Model(
        Dense(10, input_dim=x.size()[-1]),
        Activation('relu'),
        Dense(5),
        Activation('relu'),
        Dense(y.size()[-1])
    )

    opt = SGD(lr=0.01, momentum=0.9)

    def mae(y_true, y_pred):
        return torch.mean(torch.abs(y_true - y_pred))

    history = model.fit(x, y, loss=mae, optimizer=opt, epochs=10)
    assert len(history['loss']) == 10
    assert all(type(v) is float for v in history['loss'])
    assert history['loss'] == sorted(history['loss'], reverse=True)
TripletLoss.py 文件源码 项目:pytorch-PersonReID 作者: huaijin-chen 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def forward(self, anchor, positive, negative):
        #eucl distance
        #dist = torch.sum( (anchor - positive) ** 2 - (anchor - negative) ** 2, dim=1)\
        #        + self.margin

        if self.dist_type == 0:
            dist_p = F.pairwise_distance(anchor ,positive)
            dist_n = F.pairwise_distance(anchor ,negative)
        if self.dist_type == 1:
            dist_p = cosine_similarity(anchor, positive)
            disp_n = cosine_similarity(anchor, negative)


        dist_hinge = torch.clamp(dist_p - dist_n + self.margin, min=0.0)
        if self.use_ohem:
            v, idx = torch.sort(dist_hinge,descending=True)
            loss = torch.mean(v[0:self.ohem_bs])
        else:
            loss = torch.mean(dist_hinge)

        return loss
torch_backend.py 文件源码 项目:ktorch 作者: farizrahman4u 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def mean(x, axis=None, keepdims=False):
    def _mean(x, axis=axis, keepdims=keepdims):
        y = torch.mean(x, axis)
        # Since keepdims argument of torch not functional
        return y if keepdims else torch.squeeze(y, axis)

    def _compute_output_shape(x, axis=axis, keepdims=keepdims):
        if axis is None:
            return ()

        shape = list(_get_shape(x))
        if keepdims:
            shape[axis] = 1
        else:
            del shape[axis]

        return tuple(shape)

    return get_op(_mean, output_shape=_compute_output_shape, arguments=[axis, keepdims])(x)
draw_model.py 文件源码 项目:draw_pytorch 作者: chenzhaomin123 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def loss(self,x):
        self.forward(x)
        criterion = nn.BCELoss()
        x_recons = self.sigmoid(self.cs[-1])
        Lx = criterion(x_recons,x) * self.A * self.B
        Lz = 0
        kl_terms = [0] * T
        for t in xrange(self.T):
            mu_2 = self.mus[t] * self.mus[t]
            sigma_2 = self.sigmas[t] * self.sigmas[t]
            logsigma = self.logsigmas[t]
            # Lz += (0.5 * (mu_2 + sigma_2 - 2 * logsigma))    # 11
            kl_terms[t] = 0.5 * torch.sum(mu_2+sigma_2-2 * logsigma,1) - self.T * 0.5
            Lz += kl_terms[t]
        # Lz -= self.T / 2
        Lz = torch.mean(Lz)    ####################################################
        loss = Lz + Lx    # 12
        return loss


    # correct
DCN.py 文件源码 项目:DCN 作者: alexnowakvila 项目源码 文件源码 阅读 62 收藏 0 点赞 0 评论 0
def compute_loss(self, input, e, b, clusters, it=0):
        Loss = Variable(torch.zeros((self.batch_size))).type(dtype)
        Ls = Variable(torch.zeros((self.batch_size))).type(dtype)
        for cl in range(clusters // 2):
            L, m1, m2 = self.compute_diameter(input, e, cl, it=it)
            mask = ((e / 2).type(dtype_l) == cl).type(dtype)
            # print('mask', mask[0])
            n = mask.sum(1).squeeze()
            n += (n == 0).type(dtype)
            # print('mask', mask[0])
            log_probs = torch.log((1 - b) * m1 + b * m2 + (1 - mask) + 1e-8)
            Loss += L * log_probs.sum(1) / n
            Ls += L
        Ls = Ls.mean(0)
        Loss = Loss.mean(0)
        return Loss, Ls

    ###########################################################################
    #                             Split Phase                                 #
    ###########################################################################
VAEGAN.py 文件源码 项目:DisentangleVAE 作者: Jueast 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def GAN_loss(self, x):
        x = x.view(x.size(0), -1)
        if isinstance(x, torch.cuda.FloatTensor):
            eps = torch.cuda.FloatTensor(x.size(0), self.nz).normal_()
        else:
            eps = torch.FloatTensor(x.size(0), self.nz).normal_()
        alpha = torch.FloatTensor(x.size(0), 1).uniform_(0,1)
        alpha = alpha.expand(x.size(0), x.size(1))
        recon_pz = self.decode(Variable(eps))
        interpolates = alpha * x.data + (1-alpha) * recon_pz.data
        interpolates = Variable(interpolates, requires_grad=True)
        D_interpolates = self.D(interpolates)
        gradients = grad(D_interpolates, interpolates,create_graph=True)[0]
        slopes = torch.sum(gradients ** 2, 1).sqrt()
        gradient_penalty = (torch.mean(slopes - 1.) ** 2)
        return self.D(x) - self.D(recon_pz) - 10 * gradient_penalty
train.py 文件源码 项目:DREAM 作者: LaceyChen17 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def bpr_loss(x, dynamic_user, item_embedding, config):
    '''
        bayesian personalized ranking loss for implicit feedback
        parameters:
        - x: batch of users' baskets
        - dynamic_user: batch of users' dynamic representations
        - item_embedding: item_embedding matrix
        - config: model configuration
    '''
    nll = 0
    ub_seqs = []
    for u,du in zip(x, dynamic_user):
        du_p_product = torch.mm(du, item_embedding.t()) # shape: max_len, num_item
        nll_u = [] # nll for user
        for t, basket_t in enumerate(u):
            if basket_t[0] != 0 and t != 0:
                pos_idx = torch.cuda.LongTensor(basket_t) if config.cuda else torch.LongTensor(basket_t)
                # Sample negative products
                neg = [random.choice(range(1, config.num_product)) for _ in range(len(basket_t))] # replacement
                # neg = random.sample(range(1, config.num_product), len(basket_t)) # without replacement
                neg_idx = torch.cuda.LongTensor(neg) if config.cuda else torch.LongTensor(neg)
                # Score p(u, t, v > v')
                score = du_p_product[t - 1][pos_idx] - du_p_product[t - 1][neg_idx]
                #Average Negative log likelihood for basket_t
                nll_u.append(- torch.mean(torch.nn.LogSigmoid()(score)))
        nll += torch.mean(torch.cat(nll_u))
    return nll
utils.py 文件源码 项目:DREAM 作者: LaceyChen17 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def pool_avg(tensor, dim):
    return torch.mean(tensor, dim)


问题


面经


文章

微信
公众号

扫码关注公众号