python类manual_seed()的实例源码

test_autograd.py 文件源码 项目:nnmnkwii 作者: r9y9 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_modspec_gradcheck():
    static_dim = 12
    T = 16
    torch.manual_seed(1234)
    inputs = (Variable(torch.rand(T, static_dim), requires_grad=True),)
    n = 16

    for norm in [None, "ortho"]:
        assert gradcheck(ModSpec(n=n, norm=norm), inputs, eps=1e-4, atol=1e-4)
stack_3bilstm_last_encoder.py 文件源码 项目:multiNLI_encoder 作者: easonnie 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def eval_model(model_path, mode='dev'):
    torch.manual_seed(6)

    snli_d, mnli_d, embd = data_loader.load_data_sm(
        config.DATA_ROOT, config.EMBD_FILE, reseversed=False, batch_sizes=(32, 32, 32, 32, 32), device=0)

    m_train, m_dev_m, m_dev_um, m_test_m, m_test_um = mnli_d

    m_dev_um.shuffle = False
    m_dev_m.shuffle = False
    m_dev_um.sort = False
    m_dev_m.sort = False

    m_test_um.shuffle = False
    m_test_m.shuffle = False
    m_test_um.sort = False
    m_test_m.sort = False

    model = StackBiLSTMMaxout()
    model.Embd.weight.data = embd

    if torch.cuda.is_available():
        embd.cuda()
        model.cuda()

    criterion = nn.CrossEntropyLoss()

    model.load_state_dict(torch.load(model_path))

    model.max_l = 150
    m_pred = model_eval(model, m_dev_m, criterion)
    um_pred = model_eval(model, m_dev_um, criterion)

    print("dev_mismatched_score (acc, loss):", um_pred)
    print("dev_matched_score (acc, loss):", m_pred)
test_contrastive.py 文件源码 项目:pytorch-siamese 作者: delijati 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def run_tests():
    parser = argparse.ArgumentParser(add_help=False)
    parser.add_argument('--seed', type=int, default=123)
    args, remaining = parser.parse_known_args()
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(args.seed)
    remaining = [sys.argv[0]] + remaining
    unittest.main(argv=remaining)
multiprocessing_trainer.py 文件源码 项目:ParlAI 作者: facebookresearch 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _async_set_seed(self, rank, device_id, seed):
        torch.manual_seed(seed)
util.py 文件源码 项目:pyro 作者: uber 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_seed(seed, use_cuda):
    """
    setting the seed for controlling randomness in this example
    :param seed: seed value (int)
    :param use_cuda: set the random seed for torch.cuda or not
    :return: None
    """
    if seed is not None:
        torch.manual_seed(seed)
        np.random.seed(seed)
        if use_cuda:
            torch.cuda.manual_seed(seed)
util.py 文件源码 项目:pyro 作者: uber 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def set_rng_seed(rng_seed):
    """
    Sets seeds of torch, numpy, and torch.cuda (if available).
    :param int rng_seed: The seed value.
    """
    torch.manual_seed(rng_seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(rng_seed)
    np.random.seed(rng_seed)
actual_torch.py 文件源码 项目:PySyft 作者: OpenMined 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def manual_seed(seed):
    return torch.manual_seed(seed)
utils.py 文件源码 项目:pytorch-arda 作者: corenel 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def init_random_seed(manual_seed):
    """Init random seed."""
    seed = None
    if manual_seed is None:
        seed = random.randint(1, 10000)
    else:
        seed = manual_seed
    print("use random seed: {}".format(seed))
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
sentiment_trainer.py 文件源码 项目:treehopper 作者: tomekkorbak 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def train(self, dataset):
        self.model.train()
        self.embedding_model.train()
        self.embedding_model.zero_grad()
        self.optimizer.zero_grad()
        loss, k = 0.0, 0
        # torch.manual_seed(789)
        indices = torch.randperm(len(dataset))
        for idx in tqdm(range(len(dataset)),desc='Training epoch '+str(self.epoch+1)+''):
            tree, sent, label = dataset[indices[idx]]
            input = Var(sent)
            target = Var(torch.LongTensor([int(label)]))
            if self.args.cuda:
                input = input.cuda()
                target = target.cuda()
            emb = F.torch.unsqueeze(self.embedding_model(input), 1)
            output, err, _, _ = self.model.forward(tree, emb, training=True)
            #params = self.model.childsumtreelstm.getParameters()
            # params_norm = params.norm()
            err = err/self.args.batchsize # + 0.5*self.args.reg*params_norm*params_norm # custom bias
            loss += err.data[0] #
            err.backward()
            k += 1
            if k==self.args.batchsize:
                for f in self.embedding_model.parameters():
                    f.data.sub_(f.grad.data * self.args.emblr)
                self.optimizer.step()
                self.embedding_model.zero_grad()
                self.optimizer.zero_grad()
                k = 0
        self.epoch += 1
        return loss/len(dataset)

    # helper function for testing
multiprocessing_trainer.py 文件源码 项目:fairseq-py 作者: facebookresearch 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _async_set_seed(self, rank, device_id, seed):
        torch.manual_seed(seed)
utils.py 文件源码 项目:end-to-end-negotiator 作者: facebookresearch 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def set_seed(seed):
    """Sets random seed everywhere."""
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)
util.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_random_seed(seed):
    global random_seed
    random_seed = seed
    np.random.seed(seed)
    torch.manual_seed(random_seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(random_seed)
utils.py 文件源码 项目:pytorch-adda 作者: corenel 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def init_random_seed(manual_seed):
    """Init random seed."""
    seed = None
    if manual_seed is None:
        seed = random.randint(1, 10000)
    else:
        seed = manual_seed
    print("use random seed: {}".format(seed))
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
utils.py 文件源码 项目:GAN-Zoo 作者: corenel 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def init_random_seed():
    """Init random seed."""
    seed = None
    if params.manual_seed is None:
        seed = random.randint(1, 10000)
    else:
        seed = params.manual_seed
    print("use random seed: {}".format(seed))
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
utils.py 文件源码 项目:GAN-Zoo 作者: corenel 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def init_random_seed():
    """Init random seed."""
    seed = None
    if manual_seed is None:
        seed = random.randint(1, 10000)
    else:
        seed = manual_seed
    print("use random seed: {}".format(seed))
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
utils.py 文件源码 项目:GAN-Zoo 作者: corenel 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def init_random_seed():
    """Init random seed."""
    seed = None
    if params.manual_seed is None:
        seed = random.randint(1, 10000)
    else:
        seed = params.manual_seed
    print("use random seed: {}".format(seed))
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
test_nn.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def setUp(self):
        random.seed(123)
        torch.manual_seed(123)
common.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def run_tests():
    parser = argparse.ArgumentParser(add_help=False)
    parser.add_argument('--seed', type=int, default=123)
    args, remaining = parser.parse_known_args()
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(args.seed)
    remaining = [sys.argv[0]] + remaining
    unittest.main(argv=remaining)
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_rand(self):
        torch.manual_seed(123456)
        res1 = torch.rand(SIZE, SIZE)
        res2 = torch.Tensor()
        torch.manual_seed(123456)
        torch.rand(SIZE, SIZE, out=res2)
        self.assertEqual(res1, res2)
test_torch.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_randn(self):
        torch.manual_seed(123456)
        res1 = torch.randn(SIZE, SIZE)
        res2 = torch.Tensor()
        torch.manual_seed(123456)
        torch.randn(SIZE, SIZE, out=res2)
        self.assertEqual(res1, res2)


问题


面经


文章

微信
公众号

扫码关注公众号