python类optim()的实例源码

test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_sgd(self):
        self._test_rosenbrock(
            lambda params: optim.SGD(params, lr=1e-3),
            wrap_old_fn(old_optim.sgd, learningRate=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.SGD(params, lr=1e-3, momentum=0.9, dampening=0),
            wrap_old_fn(old_optim.sgd, learningRate=1e-3, momentum=0.9, dampening=0)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.SGD([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.SGD(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_adam(self):
        self._test_rosenbrock(
            lambda params: optim.Adam(params, lr=1e-2),
            wrap_old_fn(old_optim.adam, learningRate=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.Adam(params, lr=1e-2, weight_decay=1e-2),
            wrap_old_fn(old_optim.adam, learningRate=1e-2, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adam([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_adagrad(self):
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1)
        )
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1, lr_decay=1e-3),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1, learningRateDecay=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1, weight_decay=1e-2),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1)
        )
test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_adamax(self):
        self._test_rosenbrock(
            lambda params: optim.Adamax(params, lr=1e-1),
            wrap_old_fn(old_optim.adamax, learningRate=1e-1)
        )
        self._test_rosenbrock(
            lambda params: optim.Adamax(params, lr=1e-1, weight_decay=1e-2),
            wrap_old_fn(old_optim.adamax, learningRate=1e-1, weightDecay=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.Adamax(params, lr=1e-1, betas=(0.95, 0.998)),
            wrap_old_fn(old_optim.adamax, learningRate=1e-1, beta1=0.95, beta2=0.998)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1)
        )
test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def test_asgd(self):
        self._test_rosenbrock(
            lambda params: optim.ASGD(params, lr=1e-3),
            wrap_old_fn(old_optim.asgd, eta0=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.ASGD(params, lr=1e-3, alpha=0.8),
            wrap_old_fn(old_optim.asgd, eta0=1e-3, alpha=0.8)
        )
        self._test_rosenbrock(
            lambda params: optim.ASGD(params, lr=1e-3, t0=1e3),
            wrap_old_fn(old_optim.asgd, eta0=1e-3, t0=1e3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.ASGD([weight, bias], lr=1e-3, t0=100)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.ASGD(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, t0=100)
        )
test_optim.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_rprop(self):
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3, etas=(0.6, 1.1)),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3, etaminus=0.6, etaplus=1.1)
        )
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3, step_sizes=(1e-4, 3)),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3, stepsizemin=1e-4, stepsizemax=3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Rprop([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Rprop(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
uniNor_cycleGAN.py 文件源码 项目:probability_GAN 作者: MaureenZOU 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self):
        #initialize network for cycleGAN
        self.netG_A = Generator(input_size = g_input_size, hidden_size = g_hidden_size, output_size = g_output_size)
        self.netG_B = Generator(input_size = g_input_size, hidden_size = g_hidden_size, output_size = g_output_size)
        self.netD_A = Discriminator(input_size = d_input_size, hidden_size = d_hidden_size, output_size = d_output_size)
        self.netD_B = Discriminator(input_size = d_input_size, hidden_size = d_hidden_size, output_size = d_output_size)

        print('---------- Networks initialized -------------')

        #initialize loss function
        self.criterionGAN = GANLoss()
        self.criterionCycle = torch.nn.L1Loss()

        #initialize optimizers
        self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), 
            lr = d_learning_rate, betas = optim_betas)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr = d_learning_rate, betas = optim_betas)
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr = d_learning_rate, betas = optim_betas)
mixGau_cycleGAN.py 文件源码 项目:probability_GAN 作者: MaureenZOU 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self):
        #initialize network for cycleGAN
        self.netG_A = Generator(input_size = g_input_size, hidden_size = g_hidden_size, output_size = g_output_size)
        #self.netG_A = torch.nn.DataParallel(self.netG_A)
        self.netG_B = Generator(input_size = g_input_size, hidden_size = g_hidden_size, output_size = g_output_size)
        #self.netG_B = torch.nn.DataParallel(self.netG_B)
        self.netD_A = Discriminator(input_size = d_input_size, hidden_size = d_hidden_size, output_size = d_output_size)
        #self.netD_A = torch.nn.DataParallel(self.netD_A)
        self.netD_B = Discriminator(input_size = d_input_size, hidden_size = d_hidden_size, output_size = d_output_size)
        #self.netD_B = torch.nn.DataParallel(self.netD_B)

        print('---------- Networks initialized -------------')

        #initialize loss function
        self.criterionGAN = GANLoss()
        self.criterionCycle = torch.nn.L1Loss()

        #initialize optimizers
        self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), 
            lr = d_learning_rate, betas = optim_betas)
        self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr = d_learning_rate, betas = optim_betas, weight_decay = l2)
        self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr = d_learning_rate, betas = optim_betas, weight_decay = l2)
treelm.py 文件源码 项目:Tree-LSTM-LM 作者: vgene 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, args, attr_size, node_size):
        super(TreeLM, self).__init__()

        self.batch_size = args.batch_size
        self.seq_length = args.seq_length
        self.attr_size = attr_size
        self.node_size = node_size

        self.embedding_dim = args.embedding_dim
        self.layer_num = args.layer_num
        self.dropout_prob = args.dropout_prob
        self.lr = args.lr

        self.attr_embedding = nn.Embedding(self.attr_size, self.embedding_dim)
        self.dropout = nn.Dropout(self.dropout_prob)

        self.lstm = nn.LSTM(input_size = self.embedding_dim,
                            hidden_size = self.embedding_dim,
                            num_layers= self.layer_num,
                            dropout = self.dropout_prob)

        self.fc = nn.Linear(self.embedding_dim, self.node_size)
        self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
        # self.node_mapping = node_mapping
model.py 文件源码 项目:DrQA 作者: facebookresearch 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def init_optimizer(self, state_dict=None):
        """Initialize an optimizer for the free parameters of the network.

        Args:
            state_dict: network parameters
        """
        if self.args.fix_embeddings:
            for p in self.network.embedding.parameters():
                p.requires_grad = False
        parameters = [p for p in self.network.parameters() if p.requires_grad]
        if self.args.optimizer == 'sgd':
            self.optimizer = optim.SGD(parameters, self.args.learning_rate,
                                       momentum=self.args.momentum,
                                       weight_decay=self.args.weight_decay)
        elif self.args.optimizer == 'adamax':
            self.optimizer = optim.Adamax(parameters,
                                          weight_decay=self.args.weight_decay)
        else:
            raise RuntimeError('Unsupported optimizer: %s' %
                               self.args.optimizer)

    # --------------------------------------------------------------------------
    # Learning
    # --------------------------------------------------------------------------
WRN.py 文件源码 项目:FreezeOut 作者: ajbrock 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def update_lr(self):

        # Loop over all modules
        for m in self.modules():

            # If a module is active:
            if hasattr(m,'active') and m.active:

                # If we've passed this layer's freezing point, deactivate it.
                if self.j > m.max_j: 
                    m.active = False

                    # Also make sure we remove all this layer from the optimizer
                    for i,group in enumerate(self.optim.param_groups):
                        if group['layer_index']==m.layer_index:
                            self.optim.param_groups.remove(group)

                # If not, update the LR
                else:
                    for i,group in enumerate(self.optim.param_groups):
                        if group['layer_index']==m.layer_index:
                            self.optim.param_groups[i]['lr'] = (0.05/m.lr_ratio)*(1+np.cos(np.pi*self.j/m.max_j))\
                                                              if self.scale_lr else 0.05 * (1+np.cos(np.pi*self.j/m.max_j))
        self.j += 1
nets.py 文件源码 项目:e2e-model-learning 作者: locuslab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run_rmse_net(model, variables, X_train, Y_train):
    opt = optim.Adam(model.parameters(), lr=1e-3)

    for i in range(1000):
        opt.zero_grad()
        model.train()
        train_loss = nn.MSELoss()(
            model(variables['X_train_'])[0], variables['Y_train_'])
        train_loss.backward()
        opt.step()

        model.eval()
        test_loss = nn.MSELoss()(
            model(variables['X_test_'])[0], variables['Y_test_'])

        print(i, train_loss.data[0], test_loss.data[0])

    model.eval()
    model.set_sig(variables['X_train_'], variables['Y_train_'])

    return model


# TODO: minibatching
exp.py 文件源码 项目:carvana-challenge 作者: chplushsieh 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_optimizer(model, exp_name):
    '''
    create oprimizer based on parameters loaded from config
    '''

    cfg = config.load_config_file(exp_name)

    optimizer_name = cfg['optimizer']

    optimizer_method = getattr(torch.optim, optimizer_name)
    optimizer = optimizer_method(
        model.parameters(),
        lr=cfg['learning_rate'],
        momentum=cfg['momentum'],
        weight_decay=cfg['weight_decay']
    )

    return optimizer
train.py 文件源码 项目:optnet 作者: locuslab 项目源码 文件源码 阅读 80 收藏 0 点赞 0 评论 0
def get_optimizer(args, params):
    if args.dataset == 'mnist':
        if args.model == 'optnet-eq':
            params = list(params)
            A_param = params.pop(0)
            assert(A_param.size() == (args.neq, args.nHidden))
            optimizer = optim.Adam([
                {'params': params, 'lr': 1e-3},
                {'params': [A_param], 'lr': 1e-1}
            ])
        else:
            optimizer = optim.Adam(params)
    elif args.dataset in ('cifar-10', 'cifar-100'):
        if args.opt == 'sgd':
            optimizer = optim.SGD(params, lr=1e-1, momentum=0.9, weight_decay=args.weightDecay)
        elif args.opt == 'adam':
            optimizer = optim.Adam(params, weight_decay=args.weightDecay)
    else:
        assert(False)

    return optimizer
test_optim.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_sgd(self):
        self._test_rosenbrock(
            lambda params: optim.SGD(params, lr=1e-3),
            wrap_old_fn(old_optim.sgd, learningRate=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.SGD(params, lr=1e-3, momentum=0.9,
                                     dampening=0, weight_decay=1e-4),
            wrap_old_fn(old_optim.sgd, learningRate=1e-3, momentum=0.9,
                        dampening=0, weightDecay=1e-4)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.SGD([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.SGD(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
test_optim.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_adam(self):
        self._test_rosenbrock(
            lambda params: optim.Adam(params, lr=1e-2),
            wrap_old_fn(old_optim.adam, learningRate=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.Adam(params, lr=1e-2, weight_decay=1e-2),
            wrap_old_fn(old_optim.adam, learningRate=1e-2, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adam([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
test_optim.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
test_optim.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_adagrad(self):
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1)
        )
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1, lr_decay=1e-3),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1, learningRateDecay=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1, weight_decay=1e-2),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1)
        )
test_optim.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_rmsprop(self):
        self._test_rosenbrock(
            lambda params: optim.RMSprop(params, lr=1e-2),
            wrap_old_fn(old_optim.rmsprop, learningRate=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.RMSprop(params, lr=1e-2, weight_decay=1e-2),
            wrap_old_fn(old_optim.rmsprop, learningRate=1e-2, weightDecay=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.RMSprop(params, lr=1e-2, alpha=0.95),
            wrap_old_fn(old_optim.rmsprop, learningRate=1e-2, alpha=0.95)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-3),
                lr=1e-2)
        )
test_optim.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_rprop(self):
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3, etas=(0.6, 1.1)),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3, etaminus=0.6, etaplus=1.1)
        )
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3, step_sizes=(1e-4, 3)),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3, stepsizemin=1e-4, stepsizemax=3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Rprop([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Rprop(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
mnist_hogwild.py 文件源码 项目:ml-utils 作者: LinxiFan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def train(rank, args, model):
    torch.manual_seed(args.seed + rank)

    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, num_workers=1)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=args.batch_size, shuffle=True, num_workers=1)

    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    for epoch in range(1, args.epochs + 1):
        train_epoch(epoch, args, model, train_loader, optimizer)
        test_epoch(model, test_loader)
test_optim.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_sgd(self):
        self._test_rosenbrock(
            lambda params: optim.SGD(params, lr=1e-3),
            wrap_old_fn(old_optim.sgd, learningRate=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.SGD(params, lr=1e-3, momentum=0.9,
                                     dampening=0, weight_decay=1e-4),
            wrap_old_fn(old_optim.sgd, learningRate=1e-3, momentum=0.9,
                        dampening=0, weightDecay=1e-4)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.SGD([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.SGD(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
test_optim.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_adam(self):
        self._test_rosenbrock(
            lambda params: optim.Adam(params, lr=1e-2),
            wrap_old_fn(old_optim.adam, learningRate=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.Adam(params, lr=1e-2, weight_decay=1e-2),
            wrap_old_fn(old_optim.adam, learningRate=1e-2, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adam([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
test_optim.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_adadelta(self):
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params),
            wrap_old_fn(old_optim.adadelta)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, rho=0.95),
            wrap_old_fn(old_optim.adadelta, rho=0.95)
        )
        self._test_rosenbrock(
            lambda params: optim.Adadelta(params, weight_decay=1e-2),
            wrap_old_fn(old_optim.adadelta, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta([weight, bias])
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95))
        )
test_optim.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_adagrad(self):
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1)
        )
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1, lr_decay=1e-3),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1, learningRateDecay=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.Adagrad(params, lr=1e-1, weight_decay=1e-2),
            wrap_old_fn(old_optim.adagrad, learningRate=1e-1, weightDecay=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1)
        )
test_optim.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_rmsprop(self):
        self._test_rosenbrock(
            lambda params: optim.RMSprop(params, lr=1e-2),
            wrap_old_fn(old_optim.rmsprop, learningRate=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.RMSprop(params, lr=1e-2, weight_decay=1e-2),
            wrap_old_fn(old_optim.rmsprop, learningRate=1e-2, weightDecay=1e-2)
        )
        self._test_rosenbrock(
            lambda params: optim.RMSprop(params, lr=1e-2, alpha=0.95),
            wrap_old_fn(old_optim.rmsprop, learningRate=1e-2, alpha=0.95)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-2)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-3),
                lr=1e-2)
        )
test_optim.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_rprop(self):
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3)
        )
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3, etas=(0.6, 1.1)),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3, etaminus=0.6, etaplus=1.1)
        )
        self._test_rosenbrock(
            lambda params: optim.Rprop(params, lr=1e-3, step_sizes=(1e-4, 3)),
            wrap_old_fn(old_optim.rprop, stepsize=1e-3, stepsizemin=1e-4, stepsizemax=3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Rprop([weight, bias], lr=1e-3)
        )
        self._test_basic_cases(
            lambda weight, bias: optim.Rprop(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3)
        )
cifar10_custom_dataset_gap.py 文件源码 项目:pytorch_60min_blitz 作者: kyuhyoung 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def initialize(is_gpu, dir_data, di_set_transform, ext_img, n_img_per_batch, n_worker):

    trainloader, testloader, li_class = make_dataloader_custom_file(
        dir_data, di_set_transform, ext_img, n_img_per_batch, n_worker)

    #net = Net().cuda()
    net = Net_gap()
    #t1 = net.cuda()
    criterion = nn.CrossEntropyLoss()
    if is_gpu:
        net.cuda()
        criterion.cuda()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
    scheduler = ReduceLROnPlateau(optimizer, 'min', verbose=1, patience = 8, epsilon=0.00001, min_lr=0.000001) # set up scheduler

    return trainloader, testloader, net, criterion, optimizer, scheduler, li_class
conv_dqn_agent.py 文件源码 项目:deep-rl 作者: xinghai-sun 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self,
                 action_space,
                 observation_space,
                 batch_size=128,
                 learning_rate=1e-3,
                 discount=1.0,
                 epsilon=0.05):
        if not isinstance(action_space, spaces.Discrete):
            raise TypeError("Action space type should be Discrete.")
        self._action_space = action_space
        self._batch_size = batch_size
        self._discount = discount
        self._epsilon = epsilon
        self._q_network = ConvNet(
            num_channel_input=observation_space.shape[0],
            num_output=action_space.n)
        self._optimizer = optim.RMSprop(
            self._q_network.parameters(), lr=learning_rate)
        self._memory = ReplayMemory(100000)


问题


面经


文章

微信
公众号

扫码关注公众号