python类cat()的实例源码

model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _score_sentence(self, input, tags):
        bsz, sent_len, l_size = input.size()
        score = Variable(self.torch.FloatTensor(bsz).fill_(0.))
        s_score = Variable(self.torch.LongTensor([[START]]*bsz))

        tags = torch.cat([s_score, tags], dim=-1)
        input_t = input.transpose(0, 1)

        for i, words in enumerate(input_t):
            temp = self.transitions.index_select(1, tags[:, i])
            bsz_t = gather_index(temp.transpose(0, 1), tags[:, i + 1])
            w_step_score = gather_index(words, tags[:, i+1])
            score = score + bsz_t + w_step_score

        temp = self.transitions.index_select(1, tags[:, -1])
        bsz_t = gather_index(temp.transpose(0, 1),
                    Variable(self.torch.LongTensor([STOP]*bsz)))
        return score+bsz_t
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, input):
        bsz, sent_len, l_size = input.size()
        init_alphas = self.torch.FloatTensor(bsz, self.label_size).fill_(-10000.)
        init_alphas[:, START].fill_(0.)
        forward_var = Variable(init_alphas)

        input_t = input.transpose(0, 1)
        for words in input_t:
            alphas_t = []
            for next_tag in range(self.label_size):
                emit_score = words[:, next_tag].contiguous()
                emit_score = emit_score.unsqueeze(1).expand_as(words)

                trans_score = self.transitions[next_tag, :].view(1, -1).expand_as(words)
                next_tag_var = forward_var + trans_score + emit_score
                alphas_t.append(log_sum_exp(next_tag_var, True))
            forward_var = torch.cat(alphas_t, dim=-1)

        return log_sum_exp(forward_var)
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _word_repre_layer(self, input):
        """
        args:
            - input: (q_sentence, q_words)|(a_sentence, a_words)
              q_sentence - [batch_size, sent_length]
              q_words - [batch_size, sent_length, words_len]
        return:
            - output: [batch_size, sent_length, context_dim]
        """
        sentence, words = input
        # [batch_size, sent_length, corpus_emb_dim]
        s_encode = self.corpus_emb(sentence)

        # [batch_size, sent_length, word_lstm_dim]
        w_encode = self._word_repre_forward(words)
        w_encode = F.dropout(w_encode, p=self.dropout, training=True, inplace=False)

        out = torch.cat((s_encode, w_encode), 2)
        return out
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _aggre(self, q_aware_reps, a_aware_reps):
        """
        Aggregation Layer handle
        Args:
            q_aware_reps - [batch_size, question_len, 11*mp_dim+6]
            a_aware_reps - [batch_size, answer_len, 11*mp_dim+6]
        Return:
            size - [batch_size, aggregation_lstm_dim*4]
        """
        _aggres = []
        _, (q_hidden, _) = self.aggre_lstm(q_aware_reps)
        _, (a_hidden, _) = self.aggre_lstm(a_aware_reps)

        # [batch_size, aggregation_lstm_dim]
        _aggres.append(q_hidden[-2])
        _aggres.append(q_hidden[-1])
        _aggres.append(a_hidden[-2])
        _aggres.append(a_hidden[-1])
        return torch.cat(_aggres, dim=1)
data_loader.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __next__(self):
        def img2variable(img_files):
            tensors = [self._encode(Image.open(self._path + img_name)).unsqueeze(0)
                    for img_name in img_files]
            v = Variable(torch.cat(tensors, 0))
            if self._is_cuda: v = v.cuda()
            return v

        if self._step == self._stop_step:
            self._step = 0
            raise StopIteration()       

        _start = self._step*self._batch_size
        self._step += 1

        return img2variable(self._img_files[_start:_start+self._batch_size])
sketch_rnn.py 文件源码 项目:Pytorch-Sketch-RNN 作者: alexis-jacq 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self):
        self.data_location = 'cat.npz'
        self.enc_hidden_size = 256
        self.dec_hidden_size = 512
        self.Nz = 128
        self.M = 20
        self.dropout = 0.9
        self.batch_size = 100
        self.eta_min = 0.01
        self.R = 0.99995
        self.KL_min = 0.2
        self.wKL = 0.5
        self.lr = 0.001
        self.lr_decay = 0.9999
        self.min_lr = 0.00001
        self.grad_clip = 1.
        self.temperature = 0.4
        self.max_seq_length = 200
sketch_rnn.py 文件源码 项目:Pytorch-Sketch-RNN 作者: alexis-jacq 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def forward(self, inputs, batch_size, hidden_cell=None):
        if hidden_cell is None:
            # then must init with zeros
            if use_cuda:
                hidden = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size).cuda())
                cell = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size).cuda())
            else:
                hidden = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size))
                cell = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size))
            hidden_cell = (hidden, cell)
        _, (hidden,cell) = self.lstm(inputs.float(), hidden_cell)
        # hidden is (2, batch_size, hidden_size), we want (batch_size, 2*hidden_size):
        hidden_forward, hidden_backward = torch.split(hidden,1,0)
        hidden_cat = torch.cat([hidden_forward.squeeze(0), hidden_backward.squeeze(0)],1)
        # mu and sigma:
        mu = self.fc_mu(hidden_cat)
        sigma_hat = self.fc_sigma(hidden_cat)
        sigma = torch.exp(sigma_hat/2.)
        # N ~ N(0,1)
        z_size = mu.size()
        if use_cuda:
            N = Variable(torch.normal(torch.zeros(z_size),torch.ones(z_size)).cuda())
        else:
            N = Variable(torch.normal(torch.zeros(z_size),torch.ones(z_size)))
        z = mu + sigma*N
        # mu and sigma_hat are needed for LKL loss
        return z, mu, sigma_hat
sketch_rnn.py 文件源码 项目:Pytorch-Sketch-RNN 作者: alexis-jacq 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def make_target(self, batch, lengths):
        if use_cuda:
            eos = Variable(torch.stack([torch.Tensor([0,0,0,0,1])]\
                *batch.size()[1]).cuda()).unsqueeze(0)
        else:
            eos = Variable(torch.stack([torch.Tensor([0,0,0,0,1])]\
                *batch.size()[1])).unsqueeze(0)
        batch = torch.cat([batch, eos], 0)
        mask = torch.zeros(Nmax+1, batch.size()[1])
        for indice,length in enumerate(lengths):
            mask[:length,indice] = 1
        if use_cuda:
            mask = Variable(mask.cuda()).detach()
        else:
            mask = Variable(mask).detach()
        dx = torch.stack([Variable(batch.data[:,:,0])]*hp.M,2).detach()
        dy = torch.stack([Variable(batch.data[:,:,1])]*hp.M,2).detach()
        p1 = Variable(batch.data[:,:,2]).detach()
        p2 = Variable(batch.data[:,:,3]).detach()
        p3 = Variable(batch.data[:,:,4]).detach()
        p = torch.stack([p1,p2,p3],2)
        return mask,dx,dy,p
torch_util.py 文件源码 项目:multiNLI_encoder 作者: easonnie 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def select_last(inputs, lengths, hidden_size):
    """
    :param inputs: [T * B * D] D = 2 * hidden_size
    :param lengths: [B]
    :param hidden_size: dimension 
    :return:  [B * D]
    """
    batch_size = inputs.size(1)
    batch_out_list = []
    for b in range(batch_size):
        batch_out_list.append(torch.cat((inputs[lengths[b] - 1, b, :hidden_size],
                                         inputs[0, b, hidden_size:])
                                        )
                              )

    out = torch.stack(batch_out_list)
    return out
torch_util.py 文件源码 项目:multiNLI_encoder 作者: easonnie 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def pack_to_matching_matrix(s1, s2, cat_only=[False, False]):
    t1 = s1.size(0)
    t2 = s2.size(0)
    batch_size = s1.size(1)
    d = s1.size(2)

    expanded_p_s1 = s1.expand(t2, t1, batch_size, d)

    expanded_p_s2 = s2.view(t2, 1, batch_size, d)
    expanded_p_s2 = expanded_p_s2.expand(t2, t1, batch_size, d)

    if not cat_only[0] and not cat_only[1]:
        matrix = torch.cat((expanded_p_s1, expanded_p_s2), dim=3)
    elif not cat_only[0] and cat_only[1]:
        matrix = torch.cat((expanded_p_s1, expanded_p_s2, expanded_p_s1 * expanded_p_s2), dim=3)
    else:
        matrix = torch.cat((expanded_p_s1,
                            expanded_p_s2,
                            torch.abs(expanded_p_s1 - expanded_p_s2),
                            expanded_p_s1 * expanded_p_s2), dim=3)

    # matrix = torch.cat((expanded_p_s1,
    #                     expanded_p_s2), dim=3)

    return matrix
air.py 文件源码 项目:pyro 作者: uber 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def expand_z_where(z_where):
    # Take a batch of three-vectors, and massages them into a batch of
    # 2x3 matrices with elements like so:
    # [s,x,y] -> [[s,0,x],
    #             [0,s,y]]
    n = z_where.size(0)
    out = torch.cat((ng_zeros([1, 1]).type_as(z_where).expand(n, 1), z_where), 1)
    ix = Variable(expansion_indices)
    if z_where.is_cuda:
        ix = ix.cuda()
    out = torch.index_select(out, 1, ix)
    out = out.view(n, 2, 3)
    return out


# Scaling by `1/scale` here is unsatisfactory, as `scale` could be
# zero.
reshape.py 文件源码 项目:inferno 作者: inferno-pytorch 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def forward(self, *inputs):
        dim = inputs[0].dim()
        assert_(dim in [4, 5],
                'Input tensors must either be 4 or 5 '
                'dimensional, but inputs[0] is {}D.'.format(dim),
                ShapeError)
        # Get resize function
        spatial_dim = {4: 2, 5: 3}[dim]
        resize_function = getattr(F, 'adaptive_{}_pool{}d'.format(self.pool_mode,
                                                                  spatial_dim))
        target_size = pyu.as_tuple_of_len(self.target_size, spatial_dim)
        # Do the resizing
        resized_inputs = []
        for input_num, input in enumerate(inputs):
            # Make sure the dim checks out
            assert_(input.dim() == dim,
                    "Expected inputs[{}] to be a {}D tensor, got a {}D "
                    "tensor instead.".format(input_num, dim, input.dim()),
                    ShapeError)
            resized_inputs.append(resize_function(input, target_size))
        # Concatenate along the channel axis
        concatenated = torch.cat(tuple(resized_inputs), 1)
        # Done
        return concatenated
fastqa.py 文件源码 项目:jack 作者: uclmr 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init__(self, shared_resources: SharedResources):
        super(FastQAPyTorchModule, self).__init__()
        self._shared_resources = shared_resources
        input_size = shared_resources.config["repr_dim_input"]
        size = shared_resources.config["repr_dim"]
        self._size = size
        self._with_char_embeddings = self._shared_resources.config.get("with_char_embeddings", False)

        # modules & parameters
        if self._with_char_embeddings:
            self._conv_char_embedding = embedding.ConvCharEmbeddingModule(
                len(shared_resources.char_vocab), size)
            self._embedding_projection = nn.Linear(size + input_size, size)
            self._embedding_highway = Highway(size, 1)
            self._v_wiq_w = nn.Parameter(torch.ones(1, 1, input_size + size))
            input_size = size
        else:
            self._v_wiq_w = nn.Parameter(torch.ones(1, 1, input_size))

        self._bilstm = BiLSTM(input_size + 2, size)
        self._answer_layer = FastQAAnswerModule(shared_resources)

        # [size, 2 * size]
        self._question_projection = nn.Parameter(torch.cat([torch.eye(size), torch.eye(size)], dim=1))
        self._support_projection = nn.Parameter(torch.cat([torch.eye(size), torch.eye(size)], dim=1))
segment.py 文件源码 项目:jack 作者: uclmr 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def backward(ctx, grad_outputs):
        size = grad_outputs.size(1)
        segm_sorted = torch.sort(ctx.rev_segm_sorted)[1]
        grad_outputs = torch.index_select(grad_outputs, 0, segm_sorted)

        offset = [ctx.num_zeros]

        def backward_segment(l, n):
            segment_grad = grad_outputs.narrow(0, offset[0], n // l)
            if l > 1:
                segment_grad = _MyMax.backward(ctx.maxes[l], segment_grad)[0].view(n, size)
            offset[0] += n // l
            return segment_grad

        segment_grads = [backward_segment(l, n) for l, n in enumerate(ctx.num_lengths) if n > 0]
        grads = torch.cat(segment_grads, 0)
        rev_length_sorted = torch.sort(ctx.lengths_sorted)[1]
        grads = torch.index_select(grads, 0, rev_length_sorted)

        return grads, None, None, None
model.py 文件源码 项目:MP-CNN-Variants 作者: tuzhucheng 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, sent1_idx, sent2_idx, ext_feats=None):
        # Select embedding
        sent1 = self.embedding(sent1_idx).transpose(1, 2)
        sent2 = self.embedding(sent2_idx).transpose(1, 2)

        # Sentence modeling module
        sent1_block_a, sent1_block_b = self._get_blocks_for_sentence(sent1)
        sent2_block_a, sent2_block_b = self._get_blocks_for_sentence(sent2)

        # Similarity measurement layer
        feat_h = self._algo_1_horiz_comp(sent1_block_a, sent2_block_a)
        feat_v = self._algo_2_vert_comp(sent1_block_a, sent2_block_a, sent1_block_b, sent2_block_b)
        combined_feats = [feat_h, feat_v, ext_feats] if self.ext_feats else [feat_h, feat_v]
        feat_all = torch.cat(combined_feats, dim=1)

        preds = self.final_layers(feat_all)
        return preds
dataset.py 文件源码 项目:sceneReco 作者: bear63 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, batch):
        images, labels = zip(*batch)

        imgH = self.imgH
        imgW = self.imgW
        if self.keep_ratio:
            ratios = []
            for image in images:
                w, h = image.size
                ratios.append(w / float(h))
            ratios.sort()
            max_ratio = ratios[-1]
            imgW = int(np.floor(max_ratio * imgH))
            imgW = max(imgH * self.min_ratio, imgW)  # assure imgH >= imgW

        transform = resizeNormalize((imgW, imgH))
        images = [transform(image) for image in images]
        images = torch.cat([t.unsqueeze(0) for t in images], 0)

        return images, labels
train.py 文件源码 项目:pytorch-skipthoughts 作者: kaniblu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def prepare_batches(self, batch_data, chunks, **kwargs):
        x, x_lens, ys, ys_lens = batch_data
        batch_dim = 0 if self.batch_first else 1

        x_list = x.chunk(chunks, 0)
        x_lens_list = x_lens.chunk(chunks, 0)
        ys_list = ys.chunk(chunks, batch_dim)
        ys_lens_list = ys_lens.chunk(chunks, batch_dim)
        inp_list = [x_list, x_lens_list, ys_list, ys_lens_list]

        data_list = []
        for inp in zip(*inp_list):
            data = self.prepare_batch(inp, **kwargs)
            data_list.append(data)

        data_list = list(zip(*data_list))
        ret_list = []

        for data in data_list:
            data = [d.unsqueeze(0) for d in data]
            data = torch.cat(data)
            ret_list.append(data)

        return ret_list
models.py 文件源码 项目:simple-pix2pix-pytorch 作者: Eiji-Kb 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, x):           
        en0 = self.c0(x)
        en1 = self.bnc1(self.c1(F.leaky_relu(en0, negative_slope=0.2)))
        en2 = self.bnc2(self.c2(F.leaky_relu(en1, negative_slope=0.2)))
        en3 = self.bnc3(self.c3(F.leaky_relu(en2, negative_slope=0.2)))
        en4 = self.bnc4(self.c4(F.leaky_relu(en3, negative_slope=0.2)))
        en5 = self.bnc5(self.c5(F.leaky_relu(en4, negative_slope=0.2)))
        en6 = self.bnc6(self.c6(F.leaky_relu(en5, negative_slope=0.2)))
        en7 = self.c7(F.leaky_relu(en6, negative_slope=0.2))

        de7 = self.bnd7(self.d7(F.relu(en7)))
        de6 = F.dropout(self.bnd6(self.d6(F.relu(torch.cat((en6, de7),1)))))
        de5 = F.dropout(self.bnd5(self.d5(F.relu(torch.cat((en5, de6),1)))))

        de4 = F.dropout(self.bnd4(self.d4(F.relu(torch.cat((en4, de5),1)))))
        de3 = self.bnd3(self.d3(F.relu(torch.cat((en3, de4),1))))
        de2 = self.bnd2(self.d2(F.relu(torch.cat((en2, de3),1))))
        de1 = self.bnd1(self.d1(F.relu(torch.cat((en1, de2),1))))

        de0 = F.tanh(self.d0(F.relu(torch.cat((en0, de1),1))))       

        return de0
algos_utils.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def discount(rewards, gamma):
    tensor = False
    if not isinstance(rewards, list):
        tensor = True
        rewards = rewards.split(1)
    R = 0.0
    discounted = []
    for r in rewards[::-1]:
        R = r + gamma * R
        discounted.insert(0, R)
    if tensor:
        return th.cat(discounted).view(-1)
    return T(discounted)
algos_utils.py 文件源码 项目:drl.pth 作者: seba-1511 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def generalized_advantage_estimations(rewards, values, terminal=None, gamma=0.99, tau=0.95):
    gae = 0.0
    advantages = []
    values = th.cat([values, V(T([0.0077]))])
    for i in reversed(range(len(rewards))):
        nonterminal = 1.0 - terminal[i]
        delta = rewards[i] + gamma * values[i+1] * nonterminal - values[i]
        gae = delta + gamma * tau * gae * nonterminal
        advantages.insert(0, gae + values[i])
    return th.cat(advantages)


问题


面经


文章

微信
公众号

扫码关注公众号