python类cat()的实例源码

mmd.py 文件源码 项目:MMD-GAN 作者: OctoberChang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _mix_rbf_kernel(X, Y, sigma_list):
    assert(X.size(0) == Y.size(0))
    m = X.size(0)

    Z = torch.cat((X, Y), 0)
    ZZT = torch.mm(Z, Z.t())
    diag_ZZT = torch.diag(ZZT).unsqueeze(1)
    Z_norm_sqr = diag_ZZT.expand_as(ZZT)
    exponent = Z_norm_sqr - 2 * ZZT + Z_norm_sqr.t()

    K = 0.0
    for sigma in sigma_list:
        gamma = 1.0 / (2 * sigma**2)
        K += torch.exp(-gamma * exponent)

    return K[:m, :m], K[:m, m:], K[m:, m:], len(sigma_list)
dream.py 文件源码 项目:DREAM 作者: LaceyChen17 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, x, lengths, hidden):
        # Basket Encoding 
        ub_seqs = [] # users' basket sequence
        for user in x: # x shape (batch of user, time_step, indice of product) nested lists
            embed_baskets = []
            for basket in user:
                basket = torch.LongTensor(basket).resize_(1, len(basket))
                basket = basket.cuda() if self.config.cuda else basket # use cuda for acceleration
                basket = self.encode(torch.autograd.Variable(basket)) # shape: 1, len(basket), embedding_dim
                embed_baskets.append(self.pool(basket, dim = 1))
            # concat current user's all baskets and append it to users' basket sequence
            ub_seqs.append(torch.cat(embed_baskets, 1)) # shape: 1, num_basket, embedding_dim

        # Input for rnn 
        ub_seqs = torch.cat(ub_seqs, 0).cuda() if self.config.cuda else torch.cat(ub_seqs, 0) # shape: batch_size, max_len, embedding_dim
        packed_ub_seqs = torch.nn.utils.rnn.pack_padded_sequence(ub_seqs, lengths, batch_first=True) # packed sequence as required by pytorch

        # RNN
        output, h_u = self.rnn(packed_ub_seqs, hidden)
        dynamic_user, _ = torch.nn.utils.rnn.pad_packed_sequence(output, batch_first=True) # shape: batch_size, max_len, embedding_dim
        return dynamic_user, h_u
models.py 文件源码 项目:Structured-Self-Attentive-Sentence-Embedding 作者: ExplorerFreda 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, inp, hidden):
        outp = self.bilstm.forward(inp, hidden)[0]
        size = outp.size()  # [bsz, len, nhid]
        compressed_embeddings = outp.view(-1, size[2])  # [bsz*len, nhid*2]
        transformed_inp = torch.transpose(inp, 0, 1).contiguous()  # [bsz, len]
        transformed_inp = transformed_inp.view(size[0], 1, size[1])  # [bsz, 1, len]
        concatenated_inp = [transformed_inp for i in range(self.attention_hops)]
        concatenated_inp = torch.cat(concatenated_inp, 1)  # [bsz, hop, len]

        hbar = self.tanh(self.ws1(self.drop(compressed_embeddings)))  # [bsz*len, attention-unit]
        alphas = self.ws2(hbar).view(size[0], size[1], -1)  # [bsz, len, hop]
        alphas = torch.transpose(alphas, 1, 2).contiguous()  # [bsz, hop, len]
        penalized_alphas = alphas + (
            -10000 * (concatenated_inp == self.dictionary.word2idx['<pad>']).float())
            # [bsz, hop, len] + [bsz, hop, len]
        alphas = self.softmax(penalized_alphas.view(-1, size[1]))  # [bsz*hop, len]
        alphas = alphas.view(size[0], self.attention_hops, size[1])  # [bsz, hop, len]
        return torch.bmm(alphas, outp), alphas
dataset.py 文件源码 项目:crnn 作者: wulivicte 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, batch):
        images, labels = zip(*batch)

        imgH = self.imgH
        imgW = self.imgW
        if self.keep_ratio:
            ratios = []
            for image in images:
                w, h = image.size
                ratios.append(w / float(h))
            ratios.sort()
            max_ratio = ratios[-1]
            imgW = int(np.floor(max_ratio * imgH))
            imgW = max(imgH * self.min_ratio, imgW)  # assure imgH >= imgW

        transform = resizeNormalize((imgW, imgH))
        images = [transform(image) for image in images]
        images = torch.cat([t.unsqueeze(0) for t in images], 0)

        return images, labels
embedding.py 文件源码 项目:tensorboard 作者: dmlc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def make_sprite(label_img, save_path):
    import math
    import torch
    import torchvision
    # this ensures the sprite image has correct dimension as described in 
    # https://www.tensorflow.org/get_started/embedding_viz
    nrow = int(math.ceil((label_img.size(0)) ** 0.5))

    # augment images so that #images equals nrow*nrow
    label_img = torch.cat((label_img, torch.randn(nrow ** 2 - label_img.size(0), *label_img.size()[1:]) * 255), 0)

    # Dirty fix: no pixel are appended by make_grid call in save_image (https://github.com/pytorch/vision/issues/206)
    xx = torchvision.utils.make_grid(torch.Tensor(1, 3, 32, 32), padding=0)
    if xx.size(2) == 33:
        sprite = torchvision.utils.make_grid(label_img, nrow=nrow, padding=0)
        sprite = sprite[:, 1:, 1:]
        torchvision.utils.save_image(sprite, os.path.join(save_path, 'sprite.png'))
    else:
        torchvision.utils.save_image(label_img, os.path.join(save_path, 'sprite.png'), nrow=nrow, padding=0)
main.py 文件源码 项目:SGAN 作者: YuhangSong 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def log_img(x,name,iteration=0,nrow=8):

    def log_img_final(x,name,iteration=0,nrow=8):
        vutils.save_image(
            x,
            LOGDIR+name+'_'+str(iteration)+'.png',
            nrow=nrow,
        )
        vis.images( 
            x.cpu().numpy(),
            win=str(MULTI_RUN)+'-'+name,
            opts=dict(caption=str(MULTI_RUN)+'-'+name+'_'+str(iteration)),
            nrow=nrow,
        )

    if params['REPRESENTATION']==chris_domain.VECTOR:
        x = vector2image(x)
    x = x.squeeze(1)
    if params['DOMAIN']=='2Dgrid':
        if x.size()[1]==2:
            log_img_final(x[:,0:1,:,:],name+'_b',iteration,nrow)
            log_img_final(x[:,1:2,:,:],name+'_a',iteration,nrow)
            x = torch.cat([x,x[:,0:1,:,:]],1)
    log_img_final(x,name,iteration,nrow)
cp_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
feat_bn_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
pack_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
pro_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
ins_mode.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
simplify.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
feat_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def forward(self, x, hint):
        v = self.toH(hint)

        x0 = self.to0(x)
        x1 = self.to1(x0)
        x2 = self.to2(x1)
        x3 = self.to3(torch.cat([x2, v], 1))
        x4 = self.to4(x3)

        x = self.tunnel4(x4)

        x = self.tunnel3(torch.cat([x, x3.detach()], 1))
        x = self.tunnel2(torch.cat([x, x2.detach()], 1))
        x = self.tunnel1(torch.cat([x, x1.detach()], 1))
        x = F.tanh(self.exit(torch.cat([x, x0.detach()], 1)))
        return x
actor_critic.py 文件源码 项目:pytorch.rl.learning 作者: moskomule 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _loop(self):
        done = False
        total_reward, reward, iter = 0, 0, 0
        self.state = self.env.reset()
        while not done:
            action = self.policy()
            _state, reward, done, _ = self.env.step(action)
            # if _state is terminal, state value is 0
            v = 0 if done else self.state_value(_state)
            delta = reward + self.gamma * v - self.state_value(self.state)
            # \nabla_w v = s, since v = s^{\tim} w
            self.state_value_weight += self.beta * delta * to_tensor(self.state).float()
            # \pi(a) = x^{\top}(a)w, where x is feature and w is weight
            # \nabla\ln\pi(a) = x(a)\sum_b \pi(b)x(b)
            direction = self.feature(_state, action) - sum(
                    [self.softmax @ torch.cat([self.feature(_state, a).unsqueeze(0) for a in self.actions])])

            self.weight += self.alpha * pow(self.gamma, iter) * delta * direction
            total_reward += reward
            self.state = _state
            iter += 1
        return total_reward
REINFORCE_baseline.py 文件源码 项目:pytorch.rl.learning 作者: moskomule 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _loop(self):
        done = False
        total_reward, reward, iter = 0, 0, 0
        self.state = self.env.reset()
        weight = self.weight
        while not done:
            action = self.policy()
            _state, reward, done, _ = self.env.step(action)
            # use current weight to generate an episode
            # \pi(a) = x^{\top}(a)w, where x is feature and w is weight
            # \nabla\ln\pi(a) = x(a)\sum_b \pi(b)x(b)
            delta = reward - self.state_value(_state)
            self.state_value_weight += self.beta * delta * to_tensor(_state).float()
            direction = self.feature(_state, action) - sum(
                [self.softmax @ torch.cat([self.feature(_state, a).unsqueeze(0) for a in self.actions])])
            weight += self.alpha * pow(self.gamma, iter) * delta * direction
            total_reward += reward
            iter += 1
        # update weight
        self.weight = weight
        return total_reward
REINFORCE.py 文件源码 项目:pytorch.rl.learning 作者: moskomule 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _loop(self):
        done = False
        total_reward, reward, iter = 0, 0, 0
        self.state = self.env.reset()
        weight = self.weight
        while not done:
            action = self.policy()
            _state, reward, done, _ = self.env.step(action)
            # use current weight to generate an episode
            # \pi(a) = x^{\top}(a)w, where x is feature and w is weight
            # \nabla\ln\pi(a) = x(a)\sum_b \pi(b)x(b)
            direction = self.feature(_state, action) - sum(
                [self.softmax @ torch.cat([self.feature(_state, a).unsqueeze(0) for a in self.actions])])
            weight += self.alpha * pow(self.gamma, iter) * reward * direction
            total_reward += reward
            iter += 1
        # update weight
        self.weight = weight
        return total_reward
colornet.py 文件源码 项目:colorNet-pytorch 作者: shufanwu 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def forward(self, mid_input, global_input):
        w = mid_input.size()[2]
        h = mid_input.size()[3]
        global_input = global_input.unsqueeze(2).unsqueeze(2).expand_as(mid_input)
        fusion_layer = torch.cat((mid_input, global_input), 1)
        fusion_layer = fusion_layer.permute(2, 3, 0, 1).contiguous()
        fusion_layer = fusion_layer.view(-1, 512)
        fusion_layer = self.bn1(self.fc1(fusion_layer))
        fusion_layer = fusion_layer.view(w, h, -1, 256)

        x = fusion_layer.permute(2, 3, 0, 1).contiguous()
        x = F.relu(self.bn2(self.conv1(x)))
        x = self.upsample(x)
        x = F.relu(self.bn3(self.conv2(x)))
        x = F.relu(self.bn4(self.conv3(x)))
        x = self.upsample(x)
        x = F.sigmoid(self.bn5(self.conv4(x)))
        x = self.upsample(self.conv5(x))
        return x
image_pool.py 文件源码 项目:DistanceGAN 作者: sagiebenaim 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def query(self, images):
        if self.pool_size == 0:
            return images
        return_images = []
        for image in images.data:
            image = torch.unsqueeze(image, 0)
            if self.num_imgs < self.pool_size:
                self.num_imgs = self.num_imgs + 1
                self.images.append(image)
                return_images.append(image)
            else:
                p = random.uniform(0, 1)
                if p > 0.5:
                    random_id = random.randint(0, self.pool_size-1)
                    tmp = self.images[random_id].clone()
                    self.images[random_id] = image
                    return_images.append(tmp)
                else:
                    return_images.append(image)
        return_images = Variable(torch.cat(return_images, 0))
        return return_images
dataloader.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def default_collate(batch):
    "Puts each data field into a tensor with outer dimension batch size"
    if torch.is_tensor(batch[0]):
        return torch.cat([t.view(1, *t.size()) for t in batch], 0)
    elif isinstance(batch[0], int):
        return torch.LongTensor(batch)
    elif isinstance(batch[0], float):
        return torch.DoubleTensor(batch)
    elif isinstance(batch[0], str):
        return batch
    elif isinstance(batch[0], collections.Iterable):
        # if each batch element is not a tensor, then it should be a tuple
        # of tensors; in that case we collate each element in the tuple
        transposed = zip(*batch)
        return [default_collate(samples) for samples in transposed]

    raise TypeError(("batch must contain tensors, numbers, or lists; found {}"
                     .format(type(batch[0]))))
common_nn.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _numerical_jacobian(self, module, input, jacobian_input=True, jacobian_parameters=True):
        output = self._forward(module, input)
        output_size = output.nelement()

        if jacobian_parameters:
            param, d_param = self._get_parameters(module)

        def fw(input):
            out = self._forward(module, input)
            if isinstance(out, Variable):
                return out.data
            return out

        res = tuple()
        # TODO: enable non-contig tests
        input = contiguous(input)
        if jacobian_input:
            res += get_numerical_jacobian(fw, input, input),
        if jacobian_parameters:
            res += torch.cat(list(get_numerical_jacobian(fw, input, p) for p in param), 0),
        return res
test_torch.py 文件源码 项目:pytorch-dist 作者: apaszke 项目源码 文件源码 阅读 62 收藏 0 点赞 0 评论 0
def test_cat(self):
        SIZE = 10
        # 2-arg cat
        for dim in range(3):
            x = torch.rand(13, SIZE, SIZE).transpose(0, dim)
            y = torch.rand(17, SIZE, SIZE).transpose(0, dim)
            res1 = torch.cat((x, y), dim)
            self.assertEqual(res1.narrow(dim, 0, 13), x, 0)
            self.assertEqual(res1.narrow(dim, 13, 17), y, 0)

        # Check iterables
        for dim in range(3):
            x = torch.rand(13, SIZE, SIZE).transpose(0, dim)
            y = torch.rand(17, SIZE, SIZE).transpose(0, dim)
            z = torch.rand(19, SIZE, SIZE).transpose(0, dim)

            res1 = torch.cat((x, y, z), dim)
            self.assertEqual(res1.narrow(dim, 0, 13), x, 0)
            self.assertEqual(res1.narrow(dim, 13, 17), y, 0)
            self.assertEqual(res1.narrow(dim, 30, 19), z, 0)
            self.assertRaises(ValueError, lambda: torch.cat([]))
model.py 文件源码 项目:a3c-mujoco 作者: Feryal 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, non_rgb_state, rgb_state, h):
        x = self.relu(self.conv1(rgb_state))
        x = self.relu(self.conv2(x))
        x = x.view(x.size(0), -1)
        x = self.fc1(torch.cat((x, non_rgb_state), 1))
        h = self.lstm(x, h)  # h is (hidden state, cell state)
        x = h[0]
        policy1 = self.softmax(self.fc_actor1(x)).clamp(
            max=1 - 1e-20)  # Prevent 1s and hence NaNs
        policy2 = self.softmax(self.fc_actor2(x)).clamp(max=1 - 1e-20)
        policy3 = self.softmax(self.fc_actor3(x)).clamp(max=1 - 1e-20)
        policy4 = self.softmax(self.fc_actor4(x)).clamp(max=1 - 1e-20)
        policy5 = self.softmax(self.fc_actor5(x)).clamp(max=1 - 1e-20)
        policy6 = self.softmax(self.fc_actor6(x)).clamp(max=1 - 1e-20)
        V = self.fc_critic(x)
        return (policy1, policy2, policy3, policy4, policy5, policy6), V, h
box_utils.py 文件源码 项目:ssd.pytorch 作者: amdegroot 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def encode(matched, priors, variances):
    """Encode the variances from the priorbox layers into the ground truth boxes
    we have matched (based on jaccard overlap) with the prior boxes.
    Args:
        matched: (tensor) Coords of ground truth for each prior in point-form
            Shape: [num_priors, 4].
        priors: (tensor) Prior boxes in center-offset form
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        encoded boxes (tensor), Shape: [num_priors, 4]
    """

    # dist b/t match center and prior's center
    g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2]
    # encode variance
    g_cxcy /= (variances[0] * priors[:, 2:])
    # match wh / prior wh
    g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
    g_wh = torch.log(g_wh) / variances[1]
    # return target for smooth_l1_loss
    return torch.cat([g_cxcy, g_wh], 1)  # [num_priors,4]


# Adapted from https://github.com/Hakuyume/chainer-ssd
box_utils.py 文件源码 项目:ssd.pytorch 作者: amdegroot 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        loc (tensor): location predictions for loc layers,
            Shape: [num_priors,4]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded bounding box predictions
    """

    boxes = torch.cat((
        priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
        priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes
image_pool.py 文件源码 项目:DeblurGAN 作者: KupynOrest 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def query(self, images):
        if self.pool_size == 0:
            return images
        return_images = []
        for image in images.data:
            image = torch.unsqueeze(image, 0)
            if self.num_imgs < self.pool_size:
                self.num_imgs = self.num_imgs + 1
                self.images.append(image)
                return_images.append(image)
            else:
                p = random.uniform(0, 1)
                if p > 0.5:
                    random_id = random.randint(0, self.pool_size-1)
                    tmp = self.images[random_id].clone()
                    self.images[random_id] = image
                    return_images.append(tmp)
                else:
                    return_images.append(image)
        return_images = Variable(torch.cat(return_images, 0))
        return return_images
train_planet.py 文件源码 项目:kaggle-planet 作者: ZijunDeng 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def validate(val_loader, net, criterion):
    net.eval()
    batch_outputs = []
    batch_labels = []
    for vi, data in enumerate(val_loader, 0):
        inputs, labels = data
        inputs = Variable(inputs, volatile=True).cuda()
        labels = Variable(labels.float(), volatile=True).cuda()

        outputs = net(inputs)

        batch_outputs.append(outputs)
        batch_labels.append(labels)

    batch_outputs = torch.cat(batch_outputs)
    batch_labels = torch.cat(batch_labels)
    val_loss = criterion(batch_outputs, batch_labels)
    val_loss = val_loss.data[0]

    print '--------------------------------------------------------'
    print '[val_loss %.4f]' % val_loss
    net.train()
    return val_loss
elmo_test.py 文件源码 项目:allennlp 作者: allenai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_elmo_4D_input(self):
        sentences = [[['The', 'sentence', '.'],
                      ['ELMo', 'helps', 'disambiguate', 'ELMo', 'from', 'Elmo', '.']],
                     [['1', '2'], ['1', '2', '3', '4', '5', '6', '7']],
                     [['1', '2', '3', '4', '50', '60', '70'], ['The']]]

        all_character_ids = []
        for batch_sentences in sentences:
            all_character_ids.append(self._sentences_to_ids(batch_sentences))

        # (2, 3, 7, 50)
        character_ids = torch.cat([ids.unsqueeze(1) for ids in all_character_ids], dim=1)
        embeddings_4d = self.elmo(character_ids)

        # Run the individual batches.
        embeddings_3d = []
        for char_ids in all_character_ids:
            self.elmo._elmo_lstm._elmo_lstm.reset_states()
            embeddings_3d.append(self.elmo(char_ids))

        for k in range(3):
            numpy.testing.assert_array_almost_equal(
                    embeddings_4d['elmo_representations'][0][:, k, :, :].data.numpy(),
                    embeddings_3d[k]['elmo_representations'][0].data.numpy()
            )
seq2seq.py 文件源码 项目:deep-text-corrector 作者: andabi 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def forward(self, input, last_context, last_hidden, encoder_outputs):
        # input.size() = (B, 1), last_context.size() = (B, H), last_hidden.size() = (L, B, H), encoder_outputs.size() = (B, S, H)
        # word_embedded.size() = (B, 1, H)
        # print input.size()
        word_embedded = self.embedding(input)

        # rnn_input.size() = (B, 1, 2H), rnn_output.size() = (B, 1, H)
        # print word_embedded.size(), last_context.unsqueeze(1).size()
        rnn_input = torch.cat((word_embedded, last_context.unsqueeze(1)), -1)
        rnn_output, hidden = self.gru(rnn_input, last_hidden)
        rnn_output = rnn_output.squeeze(1)  # B x S=1 x H -> B x H

        # atten_weights.size() = (B, S)
        attn_weights = self.attn(rnn_output, encoder_outputs)
        context = attn_weights.unsqueeze(1).bmm(encoder_outputs).squeeze(1)  # B x H

        # TODO tanh?
        # Final output layer (next word prediction) using the RNN hidden state and context vector
        output = self.out(torch.cat((rnn_output, context), -1))  # B x V

        # Return final output, hidden state, and attention weights (for visualization)
        # output.size() = (B, V)
        return output, context, hidden, attn_weights
layers.py 文件源码 项目:DenseNet 作者: kevinzakka 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def forward(self, x):
        """
        Compute the forward pass of the composite transformation H(x),
        where x is the concatenation of the current and all preceding
        feature maps.
        """
        if self.bottleneck:
            out = self.conv1(F.relu(self.bn1(x)))
            if self.p > 0:
                out = F.dropout(out, p=self.p, training=self.training)
            out = self.conv2(F.relu(self.bn2(out)))
            if self.p > 0:
                out = F.dropout(out, p=self.p, training=self.training)
        else:
            out = self.conv2(F.relu(self.bn2(x)))
            if self.p > 0:
                out = F.dropout(out, p=self.p, training=self.training)  
        return torch.cat((x, out), 1)
layers.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, q, k, v, attn_mask):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        residual = q

        bsz, len_q, d_model = q.size()
        len_k, len_v = k.size(1), v.size(1)

        def reshape(x):
            """[bsz, len, d_*] -> [n_head x (bsz*len) x d_*]"""
            return x.repeat(n_head, 1, 1).view(n_head, -1, d_model)

        q_s, k_s, v_s = map(reshape, [q, k, v])

        q_s = torch.bmm(q_s, self.w_qs).view(-1, len_q, d_k)
        k_s = torch.bmm(k_s, self.w_ks).view(-1, len_k, d_k)
        v_s = torch.bmm(v_s, self.w_vs).view(-1, len_v, d_v)

        outputs = self.attention(q_s, k_s, v_s, attn_mask.repeat(n_head, 1, 1))
        outputs = torch.cat(torch.split(outputs, bsz, dim=0), dim=-1).view(-1, n_head*d_v)
        outputs = F.dropout(self.w_o(outputs), p=self.dropout).view(bsz, len_q, -1)
        return self.lm(outputs + residual)


问题


面经


文章

微信
公众号

扫码关注公众号