def dirac_delta(ni, no, k):
n = min(ni, no)
size = (n, n) + k
repeats = (max(no // ni, 1), max(ni // no, 1)) + (1,) * len(k)
return dirac(torch.Tensor(*size)).repeat(*repeats)
python类dirac()的实例源码
def dirac_delta(ni, no, k):
n = min(ni, no)
return dirac(torch.Tensor(n, n, k, k)).repeat(max(no // ni, 1), max(ni // no, 1), 1, 1)
def test_dirac_properties(self):
for as_variable in [True, False]:
for dims in [3, 4, 5]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5, as_variable=as_variable)
init.dirac(input_tensor)
if as_variable:
input_tensor = input_tensor.data
c_out, c_in = input_tensor.size(0), input_tensor.size(1)
min_d = min(c_out, c_in)
# Check number of nonzeros is equivalent to smallest dim
assert torch.nonzero(input_tensor).size(0) == min_d
# Check sum of values (can have precision issues, hence assertEqual) is also equivalent
self.assertEqual(input_tensor.sum(), min_d)
def test_dirac_identity(self):
batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3
# Test 1D
input_var = Variable(torch.randn(batch, in_c, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size))
init.dirac(filter_var)
output_var = F.conv1d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero
self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved
assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0
# Test 2D
input_var = Variable(torch.randn(batch, in_c, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv2d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0
# Test 3D
input_var = Variable(torch.randn(batch, in_c, size, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv3d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0
def test_dirac_only_works_on_3_4_5d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 2, 6]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.dirac(tensor)
def test_dirac_properties(self):
for as_variable in [True, False]:
for dims in [3, 4, 5]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5, as_variable=as_variable)
init.dirac(input_tensor)
if as_variable:
input_tensor = input_tensor.data
c_out, c_in = input_tensor.size(0), input_tensor.size(1)
min_d = min(c_out, c_in)
# Check number of nonzeros is equivalent to smallest dim
assert torch.nonzero(input_tensor).size(0) == min_d
# Check sum of values (can have precision issues, hence assertEqual) is also equivalent
self.assertEqual(input_tensor.sum(), min_d)
def test_dirac_identity(self):
batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3
# Test 1D
input_var = Variable(torch.randn(batch, in_c, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size))
init.dirac(filter_var)
output_var = F.conv1d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero
self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved
assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0
# Test 2D
input_var = Variable(torch.randn(batch, in_c, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv2d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0
# Test 3D
input_var = Variable(torch.randn(batch, in_c, size, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv3d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0
def test_dirac_only_works_on_3_4_5d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 2, 6]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.dirac(tensor)
def test_dirac_properties(self):
for as_variable in [True, False]:
for dims in [3, 4, 5]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5, as_variable=as_variable)
init.dirac(input_tensor)
if as_variable:
input_tensor = input_tensor.data
c_out, c_in = input_tensor.size(0), input_tensor.size(1)
min_d = min(c_out, c_in)
# Check number of nonzeros is equivalent to smallest dim
assert torch.nonzero(input_tensor).size(0) == min_d
# Check sum of values (can have precision issues, hence assertEqual) is also equivalent
self.assertEqual(input_tensor.sum(), min_d)
def test_dirac_identity(self):
batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3
# Test 1D
input_var = Variable(torch.randn(batch, in_c, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size))
init.dirac(filter_var)
output_var = F.conv1d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero
self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved
assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0
# Test 2D
input_var = Variable(torch.randn(batch, in_c, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv2d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0
# Test 3D
input_var = Variable(torch.randn(batch, in_c, size, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv3d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0
def test_dirac_only_works_on_3_4_5d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 2, 6]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.dirac(tensor)
def test_dirac_properties(self):
for as_variable in [True, False]:
for dims in [3, 4, 5]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5, as_variable=as_variable)
init.dirac(input_tensor)
if as_variable:
input_tensor = input_tensor.data
c_out, c_in = input_tensor.size(0), input_tensor.size(1)
min_d = min(c_out, c_in)
# Check number of nonzeros is equivalent to smallest dim
assert torch.nonzero(input_tensor).size(0) == min_d
# Check sum of values (can have precision issues, hence assertEqual) is also equivalent
self.assertEqual(input_tensor.sum(), min_d)
def test_dirac_identity(self):
batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3
# Test 1D
input_var = Variable(torch.randn(batch, in_c, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size))
init.dirac(filter_var)
output_var = F.conv1d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero
self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved
assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0
# Test 2D
input_var = Variable(torch.randn(batch, in_c, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv2d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0
# Test 3D
input_var = Variable(torch.randn(batch, in_c, size, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv3d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0
def test_dirac_only_works_on_3_4_5d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 2, 6]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.dirac(tensor)