python类xavier_uniform()的实例源码

model.py 文件源码 项目:pytorch-vqa 作者: Cyanogenoid 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, embedding_tokens):
        super(Net, self).__init__()
        question_features = 1024
        vision_features = config.output_features
        glimpses = 2

        self.text = TextProcessor(
            embedding_tokens=embedding_tokens,
            embedding_features=300,
            lstm_features=question_features,
            drop=0.5,
        )
        self.attention = Attention(
            v_features=vision_features,
            q_features=question_features,
            mid_features=512,
            glimpses=2,
            drop=0.5,
        )
        self.classifier = Classifier(
            in_features=glimpses * vision_features + question_features,
            mid_features=1024,
            out_features=config.max_answers,
            drop=0.5,
        )

        for m in self.modules():
            if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
                init.xavier_uniform(m.weight)
                if m.bias is not None:
                    m.bias.data.zero_()
model.py 文件源码 项目:pytorch-vqa 作者: Cyanogenoid 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, embedding_tokens, embedding_features, lstm_features, drop=0.0):
        super(TextProcessor, self).__init__()
        self.embedding = nn.Embedding(embedding_tokens, embedding_features, padding_idx=0)
        self.drop = nn.Dropout(drop)
        self.tanh = nn.Tanh()
        self.lstm = nn.LSTM(input_size=embedding_features,
                            hidden_size=lstm_features,
                            num_layers=1)
        self.features = lstm_features

        self._init_lstm(self.lstm.weight_ih_l0)
        self._init_lstm(self.lstm.weight_hh_l0)
        self.lstm.bias_ih_l0.data.zero_()
        self.lstm.bias_hh_l0.data.zero_()

        init.xavier_uniform(self.embedding.weight)
model.py 文件源码 项目:pytorch-vqa 作者: Cyanogenoid 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _init_lstm(self, weight):
        for w in weight.chunk(4, 0):
            init.xavier_uniform(w)
models.py 文件源码 项目:SRU 作者: akuzeee 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def initWeight(self, init_forget_bias=1):
        # See details in https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py
        for name, params in self.named_parameters():
            # weight?xavier????
            if 'weight' in name:
                init.xavier_uniform(params)

            # ??????????GRU?b_iz, b_hz????
            elif 'gru.bias_ih_l' in name:
                b_ir, b_iz, b_in = params.chunk(3, 0)
                init.constant(b_iz, init_forget_bias)
            elif 'gru.bias_hh_l' in name:
                b_hr, b_hz, b_hn = params.chunk(3, 0)
                init.constant(b_hz, init_forget_bias)

            # ?????bias?0????
            else:
                init.constant(params, 0)
models.py 文件源码 项目:SRU 作者: akuzeee 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def initWeight(self, init_forget_bias=1):
        # See https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py
        for name, params in self.named_parameters():
            # weight?xavier????
            if 'weight' in name:
                init.xavier_uniform(params)

            # ??????????LSTM?b_if, b_hf????
            elif 'lstm.bias_ih_l' in name:
                b_ii, b_if, b_ig, b_i0 = params.chunk(4, 0)
                init.constant(b_if, init_forget_bias)
            elif 'lstm.bias_hh_l' in name:
                b_hi, b_hf, b_hg, b_h0 = params.chunk(4, 0)
                init.constant(b_hf, init_forget_bias)

            # ?????bias?0????
            else:
                init.constant(params, 0)
utils.py 文件源码 项目:intel-cervical-cancer 作者: wangg12 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def weights_init(m):
  # classname = m.__class__.__name__
  if isinstance(m, nn.Conv2d):
    #print('init conv2d')
    #init.xavier_uniform(m.weight.data, gain=np.sqrt(2.0))
    init.kaiming_uniform(m.weight.data, mode='fan_in')
    # m.weight.data.normal_(0.0, 0.02)
  if isinstance(m, nn.Linear):
    #print('init fc')
    init.kaiming_uniform(m.weight.data, mode='fan_in')
    # size = m.weight.size()
    # fan_out = size[0] # number of rows
    # fan_in = size[1] # number of columns
    # variance = np.sqrt(2.0/(fan_in + fan_out))
    # m.weight.data.uniform_(0.0, variance)
Conv2Conv.py 文件源码 项目:OpenNMT-py 作者: OpenNMT 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, input_size, width=3, dropout=0.2, nopad=False):
        super(GatedConv, self).__init__()
        self.conv = WeightNormConv2d(input_size, 2 * input_size,
                                     kernel_size=(width, 1), stride=(1, 1),
                                     padding=(width // 2 * (1 - nopad), 0))
        init.xavier_uniform(self.conv.weight, gain=(4 * (1 - dropout))**0.5)
        self.dropout = nn.Dropout(dropout)
models.py 文件源码 项目:pytorch-nec 作者: mjacar 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def initialize_weights(self):
    conv_layers = [v for k,v in self._modules.iteritems() if 'conv' in k]
    for layer in conv_layers:
      init.xavier_uniform(layer.weight)
    init.xavier_uniform(self.head.weight)
    init.xavier_uniform(self.fc.weight)
models.py 文件源码 项目:pytorch-nec 作者: mjacar 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def initialize_weights(self):
    conv_layers = [v for k,v in self._modules.iteritems() if 'conv' in k]
    for layer in conv_layers:
      init.xavier_uniform(layer.weight)
    init.xavier_uniform(self.head.weight)
train.py 文件源码 项目:ssd.pytorch 作者: amdegroot 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def xavier(param):
    init.xavier_uniform(param)
utils.py 文件源码 项目:pytorch-tutorials 作者: tfygg 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def initNetParams(net):
    '''Init net parameters.'''
    for m in net.modules():
        if isinstance(m, nn.Conv2d):
            init.xavier_uniform(m.weight)
            if m.bias:
                init.constant(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            init.constant(m.weight, 1)
            init.constant(m.bias, 0)
        elif isinstance(m, nn.Linear):
            init.normal(m.weight, std=1e-3)
            if m.bias:
                init.constant(m.bias, 0)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim, dropout=0, softmax_boost=1.0):
        super(ProposalUniformDiscrete, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, output_dim)
        self.drop = nn.Dropout(dropout)
        self.softmax_boost = softmax_boost
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, dropout=0):
        super(ProposalNormal, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, 2)
        self.drop = nn.Dropout(dropout)
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, dropout=0):
        super(ProposalLaplace, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, 2)
        self.drop = nn.Dropout(dropout)
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, dropout=0, softmax_boost=1.0):
        super(ProposalFlip, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, 1)
        self.drop = nn.Dropout(dropout)
        self.softmax_boost = softmax_boost
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim, dropout=0, softmax_boost=1.0):
        super(ProposalDiscrete, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, output_dim)
        self.drop = nn.Dropout(dropout)
        self.softmax_boost = softmax_boost
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, dropout=0, softplus_boost=1.0):
        super(ProposalUniformContinuous, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, 2)
        self.drop = nn.Dropout(dropout)
        self.softplus_boost = softplus_boost
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, mixture_components=10, dropout=0):
        super(ProposalUniformContinuousAlt, self).__init__()
        self.mixture_components = mixture_components
        self.output_dim = 3 * mixture_components
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, self.output_dim)
        self.drop = nn.Dropout(dropout)
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, dropout=0, softplus_boost=1.0):
        super(ProposalGamma, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, 2)
        self.drop = nn.Dropout(dropout)
        self.softplus_boost = softplus_boost
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
gan_things.py 文件源码 项目:sourceseparation_misc 作者: ycemsubakan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def initializationhelper(param, nltype):

    c = 0.1 
    torchinit.uniform(param.weight, a=-c, b=c)

    #torchinit.xavier_uniform(param.weight, gain=c*torchinit.calculate_gain(nltype))
    c = 0.1
    torchinit.uniform(param.bias, a=-c, b=c)


问题


面经


文章

微信
公众号

扫码关注公众号