python类xavier_uniform()的实例源码

model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _init_weight(self):
        init.xavier_uniform(self.transitions)
        self.transitions.data[START, :].fill_(-10000.)
        self.transitions.data[:, STOP].fill_(-10000.)
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _init_weight(self, scope=1.):
        init.xavier_uniform(self.char_ebd.weight)
module.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _init_weights(self, scope=1.):
        self.embedded_chars_left.weight.data.uniform_(-scope, scope)
        self.embedded_chars_right.weight.data.uniform_(-scope, scope)
        init.xavier_uniform(self.simi_weight)
        init.xavier_uniform(self.out_lr.weight)
        init.xavier_uniform(self.logistic.weight)
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _init_weights(self, scope=0.25):
        self.lookup_table.weight.data.uniform_(-scope, scope)
        init.xavier_uniform(self.logistic.weight)
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _init_weights(self, scope=0.25):
        self.lookup_table.weight.data.uniform_(-scope, scope)
        init.xavier_uniform(self.logistic.weight)
train_voc.py 文件源码 项目:textobjdetection 作者: andfoy 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def xavier(param):
    init.xavier_uniform(param)
train_visual.py 文件源码 项目:textobjdetection 作者: andfoy 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def xavier(param):
    init.xavier_uniform(param)
train.py 文件源码 项目:textobjdetection 作者: andfoy 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def xavier(param):
    init.xavier_uniform(param)
init.py 文件源码 项目:braindecode 作者: robintibor 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def glorot_weight_zero_bias(model):
    """
    Initalize parameters of all modules
    by initializing weights with glorot  uniform/xavier initialization,
    and setting biases to zero.
    Weights from batch norm layers are set to 1.

    Parameters
    ----------
    model: Module
    """
    for module in model.modules():
        if hasattr(module, 'weight'):
            if not ('BatchNorm' in module.__class__.__name__):
                init.xavier_uniform(module.weight, gain=1)
            else:
                init.constant(module.weight, 1)
        if hasattr(module, 'bias'):
            if module.bias is not None:
                init.constant(module.bias, 0)
wide_resnet.py 文件源码 项目:wide-resnet.pytorch 作者: meliketoy 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def conv_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        init.xavier_uniform(m.weight, gain=np.sqrt(2))
        init.constant(m.bias, 0)
    elif classname.find('BatchNorm') != -1:
        init.constant(m.weight, 1)
        init.constant(m.bias, 0)
lstm-classifier.py 文件源码 项目:FewShotLearning 作者: gitabcworld 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def weights_init(self,module):
        for m in module.modules():
            if isinstance(m, nn.Conv2d):
                init.xavier_uniform(m.weight, gain=np.sqrt(2))
                init.constant(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
matching-net-classifier.py 文件源码 项目:FewShotLearning 作者: gitabcworld 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def weights_init(self,module):
        for m in module.modules():
            if isinstance(m, nn.Conv2d):
                init.xavier_uniform(m.weight, gain=np.sqrt(2))
                init.constant(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
a3c_model.py 文件源码 项目:love-letter 作者: user01 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Linear') != -1:
        init.xavier_uniform(m.weight.data)
        m.bias.data.fill_(0)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, dropout=0, softplus_boost=1.0):
        super(ProposalBeta, self).__init__()
        self.lin1 = nn.Linear(input_dim, input_dim)
        self.lin2 = nn.Linear(input_dim, 2)
        self.drop = nn.Dropout(dropout)
        self.softplus_boost = softplus_boost
        init.xavier_uniform(self.lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim, dropout=0, softplus_boost=1.0):
        super(ProposalMultivariateNormal, self).__init__()
        self.mean_lin1 = nn.Linear(input_dim, input_dim)
        self.mean_drop = nn.Dropout(dropout)
        self.mean_lin2 = nn.Linear(input_dim, output_dim)

        self.vars_lin1 = nn.Linear(input_dim, input_dim)
        self.vars_drop = nn.Dropout(dropout)
        self.vars_lin2 = nn.Linear(input_dim, output_dim)

        self.softplus_boost = softplus_boost

        init.xavier_uniform(self.mean_lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.mean_lin2.weight)
        init.xavier_uniform(self.vars_lin1.weight, gain=init.calculate_gain('relu'))
        init.xavier_uniform(self.vars_lin2.weight)
nn.py 文件源码 项目:pyprob 作者: probprog 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, input_example_non_batch, output_dim, dropout=0):
        super(ObserveEmbeddingFC, self).__init__()
        self.input_dim = input_example_non_batch.nelement()
        self.lin1 = nn.Linear(self.input_dim, output_dim)
        self.lin2 = nn.Linear(output_dim, output_dim)
        self.drop = nn.Dropout(dropout)
        init.xavier_uniform(self.lin1.weight, gain=np.sqrt(2.0))
        init.xavier_uniform(self.lin2.weight, gain=np.sqrt(2.0))
test_nn.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
        for as_variable in [True, False]:
            for dims in [0, 1]:
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
                with self.assertRaises(ValueError):
                    init.xavier_uniform(tensor)
test_nn.py 文件源码 项目:pytorch 作者: tylergenter 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_xavier_uniform(self):
        for as_variable in [True, False]:
            for use_gain in [True, False]:
                for dims in [2, 4]:
                    input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
                                                                 as_variable=as_variable)
                    gain = 1

                    if use_gain:
                        gain = self._random_float(0.1, 2)
                        init.xavier_uniform(input_tensor, gain=gain)
                    else:
                        init.xavier_uniform(input_tensor)

                    if as_variable:
                        input_tensor = input_tensor.data

                    fan_in = input_tensor.size(1)
                    fan_out = input_tensor.size(0)
                    if input_tensor.dim() > 2:
                        fan_in *= input_tensor[0, 0].numel()
                        fan_out *= input_tensor[0, 0].numel()

                    expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
                    bounds = expected_std * math.sqrt(3)
                    assert self._is_uniform(input_tensor, -bounds, bounds)
init.py 文件源码 项目:covfefe 作者: deepnn 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def xavier_uniform(w, gain=1):
    return nn.xavier_uniform(w, gain=gain)
conv.py 文件源码 项目:ml-utils 作者: LinxiFan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def conv_fc_init(layer,
                 weight_init=init.xavier_uniform,
                 bias_init=zero_init):
    """
    Initialize a layer's filter weights by xavier and bias weights to zero
    The layer can be either nn.ConvNd or nn.Linear
    """
    if isinstance(layer, (list, nn.ModuleList)):
        return type(layer)([conv_fc_init(l, weight_init=weight_init, bias_init=bias_init)
                            for l in layer])
    assert is_conv_layer(layer) or isinstance(layer, nn.Linear)
    weight_init(layer.weight)
    bias_init(layer.bias)
    return layer
train.py 文件源码 项目:ssd_pytorch 作者: miraclebiu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def xavier(param):
    init.xavier_uniform(param)
test_nn.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
        for as_variable in [True, False]:
            for dims in [0, 1]:
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
                with self.assertRaises(ValueError):
                    init.xavier_uniform(tensor)
test_nn.py 文件源码 项目:pytorch-coriander 作者: hughperkins 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_xavier_uniform(self):
        for as_variable in [True, False]:
            for use_gain in [True, False]:
                for dims in [2, 4]:
                    input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
                                                                 as_variable=as_variable)
                    gain = 1

                    if use_gain:
                        gain = self._random_float(0.1, 2)
                        init.xavier_uniform(input_tensor, gain=gain)
                    else:
                        init.xavier_uniform(input_tensor)

                    if as_variable:
                        input_tensor = input_tensor.data

                    fan_in = input_tensor.size(1)
                    fan_out = input_tensor.size(0)
                    if input_tensor.dim() > 2:
                        fan_in *= input_tensor[0, 0].numel()
                        fan_out *= input_tensor[0, 0].numel()

                    expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
                    bounds = expected_std * math.sqrt(3)
                    assert self._is_uniform(input_tensor, -bounds, bounds)
Classifier.py 文件源码 项目:MatchingNetworks 作者: gitabcworld 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def weights_init(self,module):
        for m in module.modules():
            if isinstance(m, nn.Conv2d):
                init.xavier_uniform(m.weight, gain=np.sqrt(2))
                init.constant(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
test_nn.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
        for as_variable in [True, False]:
            for dims in [0, 1]:
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
                with self.assertRaises(ValueError):
                    init.xavier_uniform(tensor)
test_nn.py 文件源码 项目:pytorch 作者: ezyang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_xavier_uniform(self):
        for as_variable in [True, False]:
            for use_gain in [True, False]:
                for dims in [2, 4]:
                    input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
                                                                 as_variable=as_variable)
                    gain = 1

                    if use_gain:
                        gain = self._random_float(0.1, 2)
                        init.xavier_uniform(input_tensor, gain=gain)
                    else:
                        init.xavier_uniform(input_tensor)

                    if as_variable:
                        input_tensor = input_tensor.data

                    fan_in = input_tensor.size(1)
                    fan_out = input_tensor.size(0)
                    if input_tensor.dim() > 2:
                        fan_in *= input_tensor[0, 0].numel()
                        fan_out *= input_tensor[0, 0].numel()

                    expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
                    bounds = expected_std * math.sqrt(3)
                    assert self._is_uniform(input_tensor, -bounds, bounds)
rasor_model.py 文件源码 项目:squad_rasor_nn 作者: hsgodhia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def init_param(self, param):
        if len(param.size()) < 2:
            init.uniform(param)
        else:            
            init.xavier_uniform(param)
rasor_model_AoA.py 文件源码 项目:squad_rasor_nn 作者: hsgodhia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def init_param(self, param):
        if len(param.size()) < 2:
            init.uniform(param)
        else:            
            init.xavier_uniform(param)
test_nn.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
        for as_variable in [True, False]:
            for dims in [0, 1]:
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
                with self.assertRaises(ValueError):
                    init.xavier_uniform(tensor)
test_nn.py 文件源码 项目:pytorch 作者: pytorch 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_xavier_uniform(self):
        for as_variable in [True, False]:
            for use_gain in [True, False]:
                for dims in [2, 4]:
                    input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
                                                                 as_variable=as_variable)
                    gain = 1

                    if use_gain:
                        gain = self._random_float(0.1, 2)
                        init.xavier_uniform(input_tensor, gain=gain)
                    else:
                        init.xavier_uniform(input_tensor)

                    if as_variable:
                        input_tensor = input_tensor.data

                    fan_in = input_tensor.size(1)
                    fan_out = input_tensor.size(0)
                    if input_tensor.dim() > 2:
                        fan_in *= input_tensor[0, 0].numel()
                        fan_out *= input_tensor[0, 0].numel()

                    expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
                    bounds = expected_std * math.sqrt(3)
                    assert self._is_uniform(input_tensor, -bounds, bounds)


问题


面经


文章

微信
公众号

扫码关注公众号