def test_bilinear(self):
module = nn.Bilinear(10, 10, 8)
module2 = legacy.Bilinear(10, 10, 8)
module2.weight.copy_(module.weight.data)
module2.bias.copy_(module.bias.data)
input1 = torch.randn(4, 10)
input2 = torch.randn(4, 10)
output = module(Variable(input1), Variable(input2))
output2 = module2.forward([input1, input2])
input1_1 = Variable(input1, requires_grad=True)
input2_1 = Variable(input2, requires_grad=True)
output3 = module(input1_1, input2_1)
grad = torch.randn(*output3.size())
output3.backward(grad)
gi1 = input1_1.grad.data.clone()
gi2 = input2_1.grad.data.clone()
self.assertEqual(output.data, output2)
self.assertEqual([gi1, gi2], output3)
self.assertTrue(gradcheck(lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias), (input1_1, input2_1)))
python类bilinear()的实例源码
def test_bilinear(self):
module = nn.Bilinear(10, 10, 8)
module2 = legacy.Bilinear(10, 10, 8)
module2.weight.copy_(module.weight.data)
module2.bias.copy_(module.bias.data)
input1 = torch.randn(4, 10)
input2 = torch.randn(4, 10)
output = module(Variable(input1), Variable(input2))
output2 = module2.forward([input1, input2])
input1_1 = Variable(input1, requires_grad=True)
input2_1 = Variable(input2, requires_grad=True)
output3 = module(input1_1, input2_1)
grad = torch.randn(*output3.size())
output3.backward(grad)
gi1 = input1_1.grad.data.clone()
gi2 = input2_1.grad.data.clone()
self.assertEqual(output.data, output2)
# TODO: this assertion is incorrect, fix needed
# self.assertEqual([gi1, gi2], output3)
self.assertTrue(gradcheck(lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias), (input1_1, input2_1)))
def test_upsamplingBilinear2d(self):
m = nn.Upsample(size=4, mode='bilinear')
in_t = torch.ones(1, 1, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
self.assertTrue(gradcheck(lambda x: F.upsample(x, 4, mode='bilinear'), (input,)))
def test_bilinear(self):
module = nn.Bilinear(10, 10, 8)
module_legacy = legacy.Bilinear(10, 10, 8)
module_legacy.weight.copy_(module.weight.data)
module_legacy.bias.copy_(module.bias.data)
input1 = torch.randn(4, 10)
input2 = torch.randn(4, 10)
output = module(Variable(input1), Variable(input2))
output_legacy = module_legacy.forward([input1, input2])
self.assertEqual(output.data, output_legacy)
input1_1 = Variable(input1, requires_grad=True)
input2_1 = Variable(input2, requires_grad=True)
module.zero_grad()
module_legacy.zeroGradParameters()
output = module(input1_1, input2_1)
grad_output = torch.randn(*output.size())
gi1_legacy, gi2_legacy = module_legacy.backward([input1, input2], grad_output)
output.backward(grad_output)
gi1 = input1_1.grad.data.clone()
gi2 = input2_1.grad.data.clone()
self.assertEqual(gi1, gi1_legacy)
self.assertEqual(gi2, gi2_legacy)
self.assertEqual(module.weight.grad.data, module_legacy.gradWeight)
self.assertEqual(module.bias.grad.data, module_legacy.gradBias)
_assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias),
(input1_1, input2_1))
def forward(self, input_left, input_right):
'''
Args:
input_left: Tensor
the left input tensor with shape = [batch1, batch2, ..., left_features]
input_right: Tensor
the right input tensor with shape = [batch1, batch2, ..., right_features]
Returns:
'''
left_size = input_left.size()
right_size = input_right.size()
assert left_size[:-1] == right_size[:-1], \
"batch size of left and right inputs mis-match: (%s, %s)" % (left_size[:-1], right_size[:-1])
batch = int(np.prod(left_size[:-1]))
# convert left and right input to matrices [batch, left_features], [batch, right_features]
input_left = input_left.view(batch, self.left_features)
input_right = input_right.view(batch, self.right_features)
# output [batch, out_features]
output = F.bilinear(input_left, input_right, self.U, self.bias)
output = output + F.linear(input_left, self.W_l, None) + F.linear(input_right, self.W_r, None)
# convert back to [batch1, batch2, ..., out_features]
return output.view(left_size[:-1] + (self.out_features, ))
def test_upsamplingBilinear2d(self):
m = nn.Upsample(size=4, mode='bilinear')
in_t = torch.ones(1, 1, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
gradcheck(lambda x: F.upsample(x, 4, mode='bilinear'), [input])
def test_bilinear(self):
module = nn.Bilinear(10, 10, 8)
module_legacy = legacy.Bilinear(10, 10, 8)
module_legacy.weight.copy_(module.weight.data)
module_legacy.bias.copy_(module.bias.data)
input1 = torch.randn(4, 10)
input2 = torch.randn(4, 10)
output = module(Variable(input1), Variable(input2))
output_legacy = module_legacy.forward([input1, input2])
self.assertEqual(output.data, output_legacy)
input1_1 = Variable(input1, requires_grad=True)
input2_1 = Variable(input2, requires_grad=True)
module.zero_grad()
module_legacy.zeroGradParameters()
output = module(input1_1, input2_1)
grad_output = torch.randn(*output.size())
gi1_legacy, gi2_legacy = module_legacy.backward([input1, input2], grad_output)
output.backward(grad_output)
gi1 = input1_1.grad.data.clone()
gi2 = input2_1.grad.data.clone()
self.assertEqual(gi1, gi1_legacy)
self.assertEqual(gi2, gi2_legacy)
self.assertEqual(module.weight.grad.data, module_legacy.gradWeight)
self.assertEqual(module.bias.grad.data, module_legacy.gradBias)
_assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias),
(input1_1, input2_1))