def batch_norm(x, params, stats, base, mode):
return F.batch_norm(x, weight=params[base + '.weight'],
bias=params[base + '.bias'],
running_mean=stats[base + '.running_mean'],
running_var=stats[base + '.running_var'],
training=mode)
python类batch_norm()的实例源码
def block(o, params, stats, base, mode, j):
w = params[base + '.conv']
alpha = params[base + '.alpha']
beta = params[base + '.beta']
delta = Variable(stats[size2name(w.size())])
w = beta * F.normalize(w.view(w.size(0), -1)).view_as(w) + alpha * delta
o = F.conv2d(ncrelu(o), w, stride=1, padding=1)
o = batch_norm(o, params, stats, base + '.bn', mode)
return o
def forward(self, input_, time):
self._check_input_dim(input_)
if time >= self.max_length:
time = self.max_length - 1
running_mean = getattr(self, 'running_mean_{}'.format(time))
running_var = getattr(self, 'running_var_{}'.format(time))
return functional.batch_norm(
input=input_, running_mean=running_mean, running_var=running_var,
weight=self.weight, bias=self.bias, training=self.training,
momentum=self.momentum, eps=self.eps)
def forward(self, input):
self._check_input_dim(input)
return F.batch_norm(
input, self.running_mean, self.running_var, self.weight, self.bias,
True, self.momentum, self.eps)
recurrent_BatchNorm.py 文件源码
项目:Recognizing-Textual-Entailment
作者: codedecde
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def forward(self, input_, index):
if index >= self.max_len:
index = self.max_len - 1
self._check_input_dim(input_, index)
running_mean = getattr(self, 'running_mean_{}'.format(index))
running_var = getattr(self, 'running_var_{}'.format(index))
return F.batch_norm(
input_, running_mean, running_var, self.weight, self.bias,
self.training, self.momentum, self.eps)
def forward(self, input_, time):
self._check_input_dim(input_)
if time >= self.max_length:
time = self.max_length - 1
running_mean = getattr(self, 'running_mean_{}'.format(time))
running_var = getattr(self, 'running_var_{}'.format(time))
return functional.batch_norm(
input=input_, running_mean=running_mean, running_var=running_var,
weight=self.weight, bias=self.bias, training=self.training,
momentum=self.momentum, eps=self.eps)
def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, torch.rand(size), running_var)
def test_batchnorm_raises_error_if_running_var_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, torch.rand(size))
def test_batchnorm_raises_error_if_weight_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, running_var, weight=Parameter(torch.rand(size)))
def test_batchnorm_raises_error_if_bias_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, running_var, bias=Parameter(torch.rand(size)))
def forward(self, input):
return F.batch_norm(input,
running_mean=self.running_mean[:input.size(1)],
running_var=self.running_var[:input.size(1)],
weight=self.weight[:input.size(1)],
bias=self.bias[:input.size(1)],
training=self.training)
# A convenience wrapper to prevent the forward() method of SMASH from
# being annoyingly verbose. This version of a fully-connected layer simply
# slices its weights according to the size of the incoming tensor.
# Note that the bias does not need slicing, as it's defined wrt the output dim.
def f(o, params, stats, mode):
o = F.batch_norm(o, running_mean=stats['bn.running_mean'],
running_var=stats['bn.running_var'],
weight=params['bn.weight'],
bias=params['bn.bias'], training=mode)
o = F.conv2d(o, params['conv1.weight'], params['conv1.bias'])
o = F.relu(o)
o = o.view(o.size(0), -1)
o = F.linear(o, params['linear2.weight'], params['linear2.bias'])
o = F.relu(o)
o = F.linear(o, params['linear3.weight'], params['linear3.bias'])
return o
efficient_batch_norm_test.py 文件源码
项目:efficient_densenet_pytorch
作者: gpleiss
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def test_forward_eval_mode_computes_forward_pass():
momentum = 0.1
eps = 1e-5
weight = torch.randn(10).cuda()
bias = torch.randn(10).cuda()
running_mean = torch.randn(10).cuda()
running_var = torch.randn(10).abs().cuda()
input_1 = torch.randn(4, 5).cuda()
input_2 = torch.randn(4, 5).cuda()
storage = torch.Storage(40).cuda()
bn = F.batch_norm(
input=Variable(torch.cat([input_1, input_2], dim=1)),
running_mean=running_mean,
running_var=running_var,
weight=Parameter(weight),
bias=Parameter(bias),
training=False,
momentum=momentum,
eps=eps
).data
input_efficient = torch.cat([input_1, input_2], dim=1)
func = _EfficientBatchNorm(
storage=storage,
running_mean=running_mean,
running_var=running_var,
training=False,
momentum=momentum,
eps=eps
)
bn_efficient = func.forward(weight, bias, input_efficient)
assert(almost_equal(bn, bn_efficient))
assert(bn_efficient.storage().data_ptr() == storage.data_ptr())
efficient_batch_norm_test.py 文件源码
项目:efficient_densenet_pytorch
作者: gpleiss
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def test_forward_train_mode_computes_forward_pass():
momentum = 0.1
eps = 1e-5
weight = torch.randn(10).cuda()
bias = torch.randn(10).cuda()
running_mean = torch.randn(10).cuda()
running_var = torch.randn(10).abs().cuda()
running_mean_efficient = running_mean.clone()
running_var_efficient = running_var.clone()
input_1 = torch.randn(4, 5).cuda()
input_2 = torch.randn(4, 5).cuda()
storage = torch.Storage(40).cuda()
bn = F.batch_norm(
input=Variable(torch.cat([input_1, input_2], dim=1)),
running_mean=running_mean,
running_var=running_var,
weight=Parameter(weight),
bias=Parameter(bias),
training=True,
momentum=momentum,
eps=eps
).data
input_efficient = torch.cat([input_1, input_2], dim=1)
func = _EfficientBatchNorm(
storage=storage,
running_mean=running_mean_efficient,
running_var=running_var_efficient,
training=True,
momentum=momentum,
eps=eps
)
bn_efficient = func.forward(weight, bias, input_efficient)
assert(almost_equal(bn, bn_efficient))
assert(bn_efficient.storage().data_ptr() == storage.data_ptr())
assert(almost_equal(running_mean, running_mean_efficient))
assert(almost_equal(running_var, running_var_efficient))
def batch_norm(x, params, stats, base, mode):
return F.batch_norm(x, weight=params[base + '.weight'],
bias=params[base + '.bias'],
running_mean=stats[base + '.running_mean'],
running_var=stats[base + '.running_var'],
training=mode)
def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, torch.rand(size), running_var)
def test_batchnorm_raises_error_if_running_var_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, torch.rand(size))
def test_batchnorm_raises_error_if_weight_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, running_var, weight=Parameter(torch.rand(size)))
def test_batchnorm_raises_error_if_bias_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, running_var, bias=Parameter(torch.rand(size)))
def batch_norm(x, params, stats, base, mode):
return F.batch_norm(x, weight=params[base + '.weight'],
bias=params[base + '.bias'],
running_mean=stats[base + '.running_mean'],
running_var=stats[base + '.running_var'],
training=mode)
def batch_normalization(self, input, # other arguments are ignored
name, is_training, activation_fn=None, scale=True, eps=0.001):
output = F.batch_norm(input, self.weights[name + '/moving_mean'], self.weights[name + '/moving_variance'],
weight=self.weights[name + '/gamma'], bias=self.weights[name + '/beta'], eps=eps)
if activation_fn is not None:
if activation_fn == 'relu':
output = F.relu(output)
else:
raise NotImplementedError
return output
efficient_batch_norm_test.py 文件源码
项目:efficient_densenet_pytorch
作者: gpleiss
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def test_backward_train_mode_computes_forward_pass():
momentum = 0.1
eps = 1e-5
weight = torch.randn(10).cuda()
bias = torch.randn(10).cuda()
running_mean = torch.randn(10).cuda()
running_var = torch.randn(10).abs().cuda()
weight_efficient = weight.clone()
bias_efficient = bias.clone()
running_mean_efficient = running_mean.clone()
running_var_efficient = running_var.clone()
input_1 = torch.randn(4, 5).cuda()
input_2 = torch.randn(4, 5).cuda()
storage = torch.Storage(40).cuda()
input_var = Variable(torch.cat([input_1, input_2], dim=1), requires_grad=True)
weight_var = Parameter(weight)
bias_var = Parameter(bias)
bn_var = F.batch_norm(
input=input_var,
running_mean=running_mean,
running_var=running_var,
weight=weight_var,
bias=bias_var,
training=True,
momentum=momentum,
eps=eps
)
bn = bn_var.data
bn_var.backward(gradient=input_var.data.clone().fill_(1))
input_grad = input_var.grad.data
weight_grad = weight_var.grad.data
bias_grad = bias_var.grad.data
input_efficient = torch.cat([input_1, input_2], dim=1)
input_efficient_orig = input_efficient.clone()
func = _EfficientBatchNorm(
storage=storage,
running_mean=running_mean_efficient,
running_var=running_var_efficient,
training=True,
momentum=momentum,
eps=eps
)
bn_efficient = func.forward(weight_efficient, bias_efficient, input_efficient)
grad_out_efficient = bn_efficient.clone().fill_(1)
weight_grad_efficient, bias_grad_efficient, input_grad_efficient = func.backward(
weight_efficient, bias_efficient, input_efficient_orig, grad_out_efficient)
assert(almost_equal(bn, bn_efficient))
assert(grad_out_efficient.storage().data_ptr() == input_grad_efficient.storage().data_ptr())
assert(almost_equal(input_grad, input_grad_efficient))
assert(almost_equal(weight_grad, weight_grad_efficient))
assert(almost_equal(bias_grad, bias_grad_efficient))