python类avg_pool2d()的实例源码

model.py 文件源码 项目:DenseNet 作者: kevinzakka 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def forward(self, x):
        """
        Run the forward pass of the DenseNet model.
        """
        out = self.conv(x)
        out = self.block(out)
        out = F.avg_pool2d(out, 8)
        out = out.view(-1, self.out_channels)
        out = self.fc(out)
        return out
model.py 文件源码 项目:torch_light 作者: ne7ermore 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def forward(self, input):
        out = self.init_cnn_layer(input)
        out = self.denseblocks(out)
        out = F.avg_pool2d(out, 8).squeeze()
        return self.lr(out)
nn_finetune_densenet_169.py 文件源码 项目:KagglePlanetPytorch 作者: Mctigger 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def generate_model():
    class DenseModel(nn.Module):
        def __init__(self, pretrained_model):
            super(DenseModel, self).__init__()
            self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)

            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal(m.weight)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
                elif isinstance(m, nn.Linear):
                    m.bias.data.zero_()

            self.features = pretrained_model.features
            self.dense1 = pretrained_model.features._modules['denseblock1']
            self.dense2 = pretrained_model.features._modules['denseblock2']
            self.dense3 = pretrained_model.features._modules['denseblock3']
            self.dense4 = pretrained_model.features._modules['denseblock4']

        def forward(self, x):
            features = self.features(x)
            out = F.relu(features, inplace=True)
            out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
            out = F.sigmoid(self.classifier(out))
            return out

    return DenseModel(torchvision.models.densenet169(pretrained=True))
nn_finetune_densenet_121.py 文件源码 项目:KagglePlanetPytorch 作者: Mctigger 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def generate_model():
    class DenseModel(nn.Module):
        def __init__(self, pretrained_model):
            super(DenseModel, self).__init__()
            self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)

            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal(m.weight)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
                elif isinstance(m, nn.Linear):
                    m.bias.data.zero_()

            self.features = pretrained_model.features
            self.dense1 = pretrained_model.features._modules['denseblock1']
            self.dense2 = pretrained_model.features._modules['denseblock2']
            self.dense3 = pretrained_model.features._modules['denseblock3']
            self.dense4 = pretrained_model.features._modules['denseblock4']

        def forward(self, x):
            features = self.features(x)
            out = F.relu(features, inplace=True)
            out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
            out = F.sigmoid(self.classifier(out))
            return out

    return DenseModel(torchvision.models.densenet121(pretrained=True))
nn_semisupervised_densenet_121.py 文件源码 项目:KagglePlanetPytorch 作者: Mctigger 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def generate_model():
    class DenseModel(nn.Module):
        def __init__(self, pretrained_model):
            super(DenseModel, self).__init__()
            self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)

            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal(m.weight)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
                elif isinstance(m, nn.Linear):
                    m.bias.data.zero_()

            self.features = pretrained_model.features
            self.layer1 = pretrained_model.features._modules['denseblock1']
            self.layer2 = pretrained_model.features._modules['denseblock2']
            self.layer3 = pretrained_model.features._modules['denseblock3']
            self.layer4 = pretrained_model.features._modules['denseblock4']

        def forward(self, x):
            features = self.features(x)
            out = F.relu(features, inplace=True)
            out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
            out = F.sigmoid(self.classifier(out))
            return out

    return DenseModel(torchvision.models.densenet121(pretrained=True))
nn_finetune_densenet_201.py 文件源码 项目:KagglePlanetPytorch 作者: Mctigger 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def generate_model():
    class DenseModel(nn.Module):
        def __init__(self, pretrained_model):
            super(DenseModel, self).__init__()
            self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)

            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal(m.weight)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
                elif isinstance(m, nn.Linear):
                    m.bias.data.zero_()

            self.features = pretrained_model.features
            self.dense1 = pretrained_model.features._modules['denseblock1']
            self.dense2 = pretrained_model.features._modules['denseblock2']
            self.dense3 = pretrained_model.features._modules['denseblock3']
            self.dense4 = pretrained_model.features._modules['denseblock4']

        def forward(self, x):
            features = self.features(x)
            out = F.relu(features, inplace=True)
            out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
            out = F.sigmoid(self.classifier(out))
            return out

    return DenseModel(torchvision.models.densenet201(pretrained=True))
nn_semisupervised_densenet_169.py 文件源码 项目:KagglePlanetPytorch 作者: Mctigger 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def generate_model():
    class DenseModel(nn.Module):
        def __init__(self, pretrained_model):
            super(DenseModel, self).__init__()
            self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)

            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal(m.weight)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
                elif isinstance(m, nn.Linear):
                    m.bias.data.zero_()

            self.features = pretrained_model.features
            self.layer1 = pretrained_model.features._modules['denseblock1']
            self.layer2 = pretrained_model.features._modules['denseblock2']
            self.layer3 = pretrained_model.features._modules['denseblock3']
            self.layer4 = pretrained_model.features._modules['denseblock4']

        def forward(self, x):
            features = self.features(x)
            out = F.relu(features, inplace=True)
            out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
            out = F.sigmoid(self.classifier(out))
            return out

    return DenseModel(torchvision.models.densenet169(pretrained=True))
densenet.py 文件源码 项目:densenet-pytorch 作者: andreasveit 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = self.conv1(self.relu(self.bn1(x)))
        if self.droprate > 0:
            out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
        return F.avg_pool2d(out, 2)
densenet.py 文件源码 项目:densenet-pytorch 作者: andreasveit 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = self.conv1(x)
        out = self.trans1(self.block1(out))
        out = self.trans2(self.block2(out))
        out = self.block3(out)
        out = self.relu(self.bn1(out))
        out = F.avg_pool2d(out, 8)
        out = out.view(-1, self.in_planes)
        return self.fc(out)
darknet.py 文件源码 项目:pytorch-caffe-darknet-convert 作者: marvis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, x):
        N = x.data.size(0)
        C = x.data.size(1)
        H = x.data.size(2)
        W = x.data.size(3)
        x = F.avg_pool2d(x, (H, W))
        x = x.view(N, C)
        return x

# for route and shortcut
densenet.py 文件源码 项目:Bilinear_CNN_dog_classifi 作者: chencodeX 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def forward(self, x):
        # x = x.clone()
        x[:, 0] = (x[:, 0] - 0.485) / 0.229
        x[:, 1] = (x[:, 1] - 0.456) / 0.224
        x[:, 2] = (x[:, 2] - 0.406) / 0.225
        features = self.features(x)
        # temp_size = features.size(0)
        out = F.relu(features, inplace=True)
        out = F.avg_pool2d(out, kernel_size=7).view(features.size(0), -1)
        ft = out.clone()
        out = self.classifier(out)
        return out,ft
inception.py 文件源码 项目:Bilinear_CNN_dog_classifi 作者: chencodeX 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
inception.py 文件源码 项目:Bilinear_CNN_dog_classifi 作者: chencodeX 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def forward(self, x):
        # 17 x 17 x 768
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # 5 x 5 x 768
        x = self.conv0(x)
        # 5 x 5 x 128
        x = self.conv1(x)
        # 1 x 1 x 768
        x = x.view(x.size(0), -1)
        # 768
        x = self.group1(x)
        # 1000
        return x
resnet.py 文件源码 项目:wide-resnet.pytorch 作者: meliketoy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.avg_pool2d(out, 8)
        out = out.view(out.size(0), -1)
        out = self.linear(out)

        return out
wide_resnet.py 文件源码 项目:wide-resnet.pytorch 作者: meliketoy 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.relu(self.bn1(out))
        out = F.avg_pool2d(out, 8)
        out = out.view(out.size(0), -1)
        out = self.linear(out)

        return out
densenet.py 文件源码 项目:pytorch-cifar 作者: kuangliu 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = self.conv(F.relu(self.bn(x)))
        out = F.avg_pool2d(out, 2)
        return out
densenet.py 文件源码 项目:pytorch-cifar 作者: kuangliu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = self.conv1(x)
        out = self.trans1(self.dense1(out))
        out = self.trans2(self.dense2(out))
        out = self.trans3(self.dense3(out))
        out = self.dense4(out)
        out = F.avg_pool2d(F.relu(self.bn(out)), 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out
shufflenet.py 文件源码 项目:pytorch-cifar 作者: kuangliu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out
preact_resnet.py 文件源码 项目:pytorch-cifar 作者: kuangliu 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out
resnet.py 文件源码 项目:pytorch-cifar 作者: kuangliu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


问题


面经


文章

微信
公众号

扫码关注公众号