def forward(self, x):
"""
Run the forward pass of the DenseNet model.
"""
out = self.conv(x)
out = self.block(out)
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.out_channels)
out = self.fc(out)
return out
python类avg_pool2d()的实例源码
def forward(self, input):
out = self.init_cnn_layer(input)
out = self.denseblocks(out)
out = F.avg_pool2d(out, 8).squeeze()
return self.lr(out)
def generate_model():
class DenseModel(nn.Module):
def __init__(self, pretrained_model):
super(DenseModel, self).__init__()
self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.features = pretrained_model.features
self.dense1 = pretrained_model.features._modules['denseblock1']
self.dense2 = pretrained_model.features._modules['denseblock2']
self.dense3 = pretrained_model.features._modules['denseblock3']
self.dense4 = pretrained_model.features._modules['denseblock4']
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
out = F.sigmoid(self.classifier(out))
return out
return DenseModel(torchvision.models.densenet169(pretrained=True))
def generate_model():
class DenseModel(nn.Module):
def __init__(self, pretrained_model):
super(DenseModel, self).__init__()
self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.features = pretrained_model.features
self.dense1 = pretrained_model.features._modules['denseblock1']
self.dense2 = pretrained_model.features._modules['denseblock2']
self.dense3 = pretrained_model.features._modules['denseblock3']
self.dense4 = pretrained_model.features._modules['denseblock4']
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
out = F.sigmoid(self.classifier(out))
return out
return DenseModel(torchvision.models.densenet121(pretrained=True))
nn_semisupervised_densenet_121.py 文件源码
项目:KagglePlanetPytorch
作者: Mctigger
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def generate_model():
class DenseModel(nn.Module):
def __init__(self, pretrained_model):
super(DenseModel, self).__init__()
self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.features = pretrained_model.features
self.layer1 = pretrained_model.features._modules['denseblock1']
self.layer2 = pretrained_model.features._modules['denseblock2']
self.layer3 = pretrained_model.features._modules['denseblock3']
self.layer4 = pretrained_model.features._modules['denseblock4']
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
out = F.sigmoid(self.classifier(out))
return out
return DenseModel(torchvision.models.densenet121(pretrained=True))
def generate_model():
class DenseModel(nn.Module):
def __init__(self, pretrained_model):
super(DenseModel, self).__init__()
self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.features = pretrained_model.features
self.dense1 = pretrained_model.features._modules['denseblock1']
self.dense2 = pretrained_model.features._modules['denseblock2']
self.dense3 = pretrained_model.features._modules['denseblock3']
self.dense4 = pretrained_model.features._modules['denseblock4']
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
out = F.sigmoid(self.classifier(out))
return out
return DenseModel(torchvision.models.densenet201(pretrained=True))
nn_semisupervised_densenet_169.py 文件源码
项目:KagglePlanetPytorch
作者: Mctigger
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def generate_model():
class DenseModel(nn.Module):
def __init__(self, pretrained_model):
super(DenseModel, self).__init__()
self.classifier = nn.Linear(pretrained_model.classifier.in_features, 17)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.features = pretrained_model.features
self.layer1 = pretrained_model.features._modules['denseblock1']
self.layer2 = pretrained_model.features._modules['denseblock2']
self.layer3 = pretrained_model.features._modules['denseblock3']
self.layer4 = pretrained_model.features._modules['denseblock4']
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
out = F.sigmoid(self.classifier(out))
return out
return DenseModel(torchvision.models.densenet169(pretrained=True))
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
return F.avg_pool2d(out, 2)
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.block1(out))
out = self.trans2(self.block2(out))
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.in_planes)
return self.fc(out)
def forward(self, x):
N = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
x = F.avg_pool2d(x, (H, W))
x = x.view(N, C)
return x
# for route and shortcut
def forward(self, x):
# x = x.clone()
x[:, 0] = (x[:, 0] - 0.485) / 0.229
x[:, 1] = (x[:, 1] - 0.456) / 0.224
x[:, 2] = (x[:, 2] - 0.406) / 0.225
features = self.features(x)
# temp_size = features.size(0)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=7).view(features.size(0), -1)
ft = out.clone()
out = self.classifier(out)
return out,ft
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
def forward(self, x):
# 17 x 17 x 768
x = F.avg_pool2d(x, kernel_size=5, stride=3)
# 5 x 5 x 768
x = self.conv0(x)
# 5 x 5 x 128
x = self.conv1(x)
# 1 x 1 x 768
x = x.view(x.size(0), -1)
# 768
x = self.group1(x)
# 1000
return x
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def forward(self, x):
out = self.conv(F.relu(self.bn(x)))
out = F.avg_pool2d(out, 2)
return out
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.trans3(self.dense3(out))
out = self.dense4(out)
out = F.avg_pool2d(F.relu(self.bn(out)), 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out