python类avg_pool2d()的实例源码

resnet.py 文件源码 项目:open-reid 作者: Cysu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def forward(self, x):
        for name, module in self.base._modules.items():
            if name == 'avgpool':
                break
            x = module(x)

        if self.cut_at_pooling:
            return x

        x = F.avg_pool2d(x, x.size()[2:])
        x = x.view(x.size(0), -1)

        if self.has_embedding:
            x = self.feat(x)
            x = self.feat_bn(x)
        if self.norm:
            x = F.normalize(x)
        elif self.has_embedding:
            x = F.relu(x)
        if self.dropout > 0:
            x = self.drop(x)
        if self.num_classes > 0:
            x = self.classifier(x)
        return x
inception.py 文件源码 项目:Bilinear_CNN_dog_classifi 作者: chencodeX 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)
inception.py 文件源码 项目:Bilinear_CNN_dog_classifi 作者: chencodeX 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
model.py 文件源码 项目:ShuffleNet 作者: jaxony 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def forward(self, x):
        # save for combining later with output
        residual = x

        if self.combine == 'concat':
            residual = F.avg_pool2d(residual, kernel_size=3, 
                stride=2, padding=1)

        out = self.g_conv_1x1_compress(x)
        out = channel_shuffle(out, self.groups)
        out = self.depthwise_conv3x3(out)
        out = self.bn_after_depthwise(out)
        out = self.g_conv_1x1_expand(out)

        out = self._combine_func(residual, out)
        return F.relu(out)
model.py 文件源码 项目:ShuffleNet 作者: jaxony 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)

        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)

        # global average pooling layer
        x = F.avg_pool2d(x, x.data.size()[-2:])

        # flatten for input to fully-connected layer
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return F.log_softmax(x, dim=1)
cnn.py 文件源码 项目:pytorch-deform-conv 作者: oeway 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.relu(self.conv11(x))
        x = self.bn11(x)

        x = F.relu(self.conv12(x))
        x = self.bn12(x)

        x = F.relu(self.conv21(x))
        x = self.bn21(x)

        x = F.relu(self.conv22(x))
        x = self.bn22(x)

        x = F.avg_pool2d(x, kernel_size=[x.size(2), x.size(3)])
        x = self.fc(x.view(x.size()[:2]))#
        x = F.softmax(x)
        return x
cnn.py 文件源码 项目:pytorch-deform-conv 作者: oeway 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.relu(self.conv11(x))
        x = self.bn11(x)

        x = self.offset12(x)
        x = F.relu(self.conv12(x))
        x = self.bn12(x)

        x = self.offset21(x)
        x = F.relu(self.conv21(x))
        x = self.bn21(x)

        x = self.offset22(x)
        x = F.relu(self.conv22(x))
        x = self.bn22(x)

        x = F.avg_pool2d(x, kernel_size=[x.size(2), x.size(3)])
        x = self.fc(x.view(x.size()[:2]))
        x = F.softmax(x)
        return x
inpainting.py 文件源码 项目:samples 作者: delta-onera 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def forward(self, x):
        avg = F.avg_pool2d(x,kernel_size=7, stride=1, padding=3)

        x1_1 = torch.cat([x,avg],1)
        x1_1 = F.relu(self.conv1_1(x1_1))
        x1_2 = F.avg_pool2d(x1_1,kernel_size=2, stride=2)
        x1_2 = F.relu(self.conv1_2(x1_2))
        x1_4 = F.avg_pool2d(x1_2,kernel_size=2, stride=2)
        x1_4 = F.relu(self.conv1_3(x1_4))
        x1_2_ = F.upsample_nearest(x1_4, scale_factor=2)
        x1_2 = torch.cat([x1_2,x1_2_],1)
        x1_2 = F.relu(self.conv1_4(x1_2))
        x1_1_ = F.upsample_nearest(x1_2, scale_factor=2)
        x1_1 = torch.cat([x1_1,x1_1_],1)
        px = F.relu(self.conv1_5(x1_1))
        px = torch.cat([px,px,px],1)
        px = 1-px/16

        return px*x+(1-px)*avg
MCCNN.py 文件源码 项目:PytorchDL 作者: FredHuangBia 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.bn1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = F.max_pool2d(x, kernel_size=(1,2), stride=(1,2), padding=(0,1))
        x = F.relu(x)
        x = self.conv3(x)
        x = self.bn3(x)
        x = F.max_pool2d(x, kernel_size=(1,2), stride=(1,2), padding=(0,1))
        x = F.relu(x)
        x = self.conv4(x)
        x = self.bn4(x)
        x = F.avg_pool2d(x, kernel_size=(1,2), stride=(1,2), padding=0)
        x = F.relu(x)
        x = x.view(-1,192)

        return x
inception_resnet_v2.py 文件源码 项目:pytorch-planet-amazon 作者: rwightman 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = self.conv2d_1a(x)
        x = self.conv2d_2a(x)
        x = self.conv2d_2b(x)
        x = self.maxpool_3a(x)
        x = self.conv2d_3b(x)
        x = self.conv2d_4a(x)
        x = self.maxpool_5a(x)
        x = self.mixed_5b(x)
        x = self.repeat(x)
        x = self.mixed_6a(x)
        x = self.repeat_1(x)
        x = self.mixed_7a(x)
        x = self.repeat_2(x)
        x = self.block8(x)
        x = self.conv2d_7b(x)
        #x = F.avg_pool2d(x, 8, count_include_pad=False)]
        x = adaptive_avgmax_pool2d(x, self.global_pool, count_include_pad=False)
        x = x.view(x.size(0), -1)
        if self.drop_rate > 0:
            x = F.dropout(x, p=self.drop_rate, training=self.training)
        x = self.classif(x)
        return x
adaptive_avgmax_pool.py 文件源码 项目:pytorch-planet-amazon 作者: rwightman 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def adaptive_avgmax_pool2d(x, pool_type='avg', padding=0, count_include_pad=False):
    """Selectable global pooling function with dynamic input kernel size
    """
    if pool_type == 'avgmaxc':
        x = torch.cat([
            F.avg_pool2d(
                x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad),
            F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
        ], dim=1)
    elif pool_type == 'avgmax':
        x_avg = F.avg_pool2d(
                x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
        x_max = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
        x = 0.5 * (x_avg + x_max)
    elif pool_type == 'max':
        x = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
    else:
        if pool_type != 'avg':
            print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type)
        x = F.avg_pool2d(
            x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
    return x
cnn.py 文件源码 项目:pytorch_resnet 作者: taokong 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.relu(self.conv11(x))
        x = self.bn11(x)

        x = F.relu(self.conv12(x))
        x = self.bn12(x)

        x = F.relu(self.conv21(x))
        x = self.bn21(x)

        x = F.relu(self.conv22(x))
        x = self.bn22(x)

        x = F.avg_pool2d(x, kernel_size=[x.size(2), x.size(3)])
        x = self.fc(x.view(x.size()[:2]))#
        x = F.softmax(x)
        return x
cnn.py 文件源码 项目:pytorch_resnet 作者: taokong 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.relu(self.conv11(x))
        x = self.bn11(x)

        x = self.offset12(x)
        x = F.relu(self.conv12(x))
        x = self.bn12(x)

        x = self.offset21(x)
        x = F.relu(self.conv21(x))
        x = self.bn21(x)

        x = self.offset22(x)
        x = F.relu(self.conv22(x))
        x = self.bn22(x)

        x = F.avg_pool2d(x, kernel_size=[x.size(2), x.size(3)])
        x = self.fc(x.view(x.size()[:2]))
        x = F.softmax(x)
        return x
torchvision_models.py 文件源码 项目:pretrained-models.pytorch 作者: Cadene 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def modify_densenets(model):
    # Modify attributs
    model.last_linear = model.classifier
    del model.classifier

    def logits(self, features):
        x = F.relu(features, inplace=True)
        x = F.avg_pool2d(x, kernel_size=7, stride=1)
        x = x.view(x.size(0), -1)
        x = self.last_linear(x)
        return x

    def forward(self, input):
        x = self.features(input)
        x = self.logits(x)
        return x

    # Modify methods
    setattr(model.__class__, 'logits', logits)
    setattr(model.__class__, 'forward', forward)
    return model
my_inception.py 文件源码 项目:intel-cervical-cancer 作者: wangg12 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)
my_inception.py 文件源码 项目:intel-cervical-cancer 作者: wangg12 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
inception.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)
inception.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
resnet.py 文件源码 项目:dawn-bench-models 作者: stanford-futuredata 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, inputs):
        H = self.conv1(inputs)

        if not self.pre_act:
            H = self.bn1(H)
            H = F.relu(H)

        for section_index in range(self.num_sections):
            H = getattr(self, f'section_{section_index}')(H)

        if self.pre_act:
            H = self.bn1(H)
            H = F.relu(H)

        H = F.avg_pool2d(H, H.size()[2:])
        H = H.view(H.size(0), -1)
        outputs = self.fc(H)

        return outputs
adaptive_avgmax_pool.py 文件源码 项目:pytorch-dpn-pretrained 作者: rwightman 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def adaptive_avgmax_pool2d(x, pool_type='avg', padding=0, count_include_pad=False):
    """Selectable global pooling function with dynamic input kernel size
    """
    if pool_type == 'avgmaxc':
        x = torch.cat([
            F.avg_pool2d(
                x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad),
            F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
        ], dim=1)
    elif pool_type == 'avgmax':
        x_avg = F.avg_pool2d(
                x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
        x_max = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
        x = 0.5 * (x_avg + x_max)
    elif pool_type == 'max':
        x = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
    else:
        if pool_type != 'avg':
            print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type)
        x = F.avg_pool2d(
            x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
    return x
MyGoogleNet.py 文件源码 项目:Person-Re-ID 作者: zsjbook 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)
MyGoogleNet.py 文件源码 项目:Person-Re-ID 作者: zsjbook 项目源码 文件源码 阅读 112 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
resnext.py 文件源码 项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        # out = self.layer4(out)
        out = F.avg_pool2d(out, 8)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out
feat_bn_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, color, sketch):
        color = F.avg_pool2d(color, 16, 16)
        sketch = self.model(sketch)
        out = self.prototype(torch.cat([sketch, color], 1))
        return self.out(out.view(color.size(0), -1))
pro_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def forward(self, color, sketch):
        color = F.avg_pool2d(color, 16, 16)
        sketch = self.model(sketch)
        out = self.prototype(torch.cat([sketch, color], 1))
        return self.out(out.view(color.size(0), -1))
ins_mode.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, color, sketch):
        color = F.avg_pool2d(color, 16, 16)
        sketch = self.model(sketch)
        out = self.prototype(torch.cat([sketch, color], 1))
        return self.out(out.view(color.size(0), -1))
simplify.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, color, sketch):
        color = F.avg_pool2d(color, 16, 16)
        sketch = self.model(sketch)
        out = self.prototype(torch.cat([sketch, color], 1))
        return self.out(out.view(color.size(0), -1))
feat_model.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, color, sketch):
        color = F.avg_pool2d(color, 16, 16)
        sketch = self.model(sketch)
        out = self.prototype(torch.cat([sketch, color], 1))
        return self.out(out.view(color.size(0), -1))
densenet.py 文件源码 项目:ResNeXt-DenseNet 作者: D-X-Y 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def forward(self, x):
    out = self.conv1(F.relu(self.bn1(x)))
    out = F.avg_pool2d(out, 2)
    return out
densenet.py 文件源码 项目:ResNeXt-DenseNet 作者: D-X-Y 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def forward(self, x):
    out = self.conv1(x)
    out = self.trans1(self.dense1(out))
    out = self.trans2(self.dense2(out))
    out = self.dense3(out)
    out = torch.squeeze(F.avg_pool2d(F.relu(self.bn1(out)), 8))
    out = F.log_softmax(self.fc(out))
    return out


问题


面经


文章

微信
公众号

扫码关注公众号