python类max_pool2d()的实例源码

models.py 文件源码 项目:optnet 作者: locuslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def forward(self, x):
        nBatch = x.size(0)

        x = F.max_pool2d(self.conv1(x), 2)
        x = F.max_pool2d(self.conv2(x), 2)
        x = x.view(nBatch, -1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return self.projF(x)
neural_network.py 文件源码 项目:pytorch_60min_blitz 作者: kyuhyoung 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        #self.relu1 = F.relu(self.conv1)
        #self.pool1 = F.max_pool2d(self.relu1, 2)
neural_network.py 文件源码 项目:pytorch_60min_blitz 作者: kyuhyoung 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward_ori(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
         #self.num_flat_features(x) = 16 * 5 * 5
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
test.py 文件源码 项目:Deep-Learning 作者: tankche1 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def Down(self,x, M, N):
        x = F.max_pool2d(x, (2, 2))
        #print(x.data)
        x = self.Block(x, M, N)
        return x
basic.py 文件源码 项目:PyTorch-Encoding 作者: zhanghang1989 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, input):
        if isinstance(input, Variable):
            return F.max_pool2d(input, self.kernel_size, self.stride, \
                self.padding, self.dilation, self.ceil_mode, \
                self.return_indices)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')
MNIST_with_centerloss.py 文件源码 项目:MNIST_center_loss_pytorch 作者: jxgu1016 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = self.prelu1_1(self.conv1_1(x))
        x = self.prelu1_2(self.conv1_2(x))
        x = F.max_pool2d(x,2)
        x = self.prelu2_1(self.conv2_1(x))
        x = self.prelu2_2(self.conv2_2(x))
        x = F.max_pool2d(x,2)
        x = self.prelu3_1(self.conv3_1(x))
        x = self.prelu3_2(self.conv3_2(x))
        x = F.max_pool2d(x,2)
        x = x.view(-1, 128*3*3)
        ip1 = self.preluip1(self.ip1(x))
        ip2 = self.ip2(ip1)
        return ip1, F.log_softmax(ip2)
segmentation.py 文件源码 项目:samples 作者: delta-onera 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.relu(self.conv1_1(x))
        x = F.relu(self.conv1_2(x))
        p1 = self.prob1(x)
        x = F.max_pool2d(x,kernel_size=2, stride=2,return_indices=False)

        x = F.relu(self.conv2_1(x))
        x = F.relu(self.conv2_2(x))
        p2 = self.prob2(x)
        p2=F.upsample_nearest(p2, scale_factor=2)
        x = F.max_pool2d(x,kernel_size=2, stride=2,return_indices=False)

        x = F.relu(self.conv3_1(x))
        x = F.relu(self.conv3_2(x))
        x = F.relu(self.conv3_3(x))
        p4 = self.prob4(x)
        p4=F.upsample_nearest(p4, scale_factor=4)
        x = F.max_pool2d(x,kernel_size=2, stride=2,return_indices=False)

        x = F.relu(self.conv4_1(x))
        x = F.relu(self.conv4_2(x))
        x = F.relu(self.conv4_3(x))
        p8 = self.prob8(x)
        p8=F.upsample_nearest(p8, scale_factor=8)
        x = F.max_pool2d(x,kernel_size=2, stride=2,return_indices=False)

        x = F.relu(self.conv5_1(x))
        x = F.relu(self.conv5_2(x))
        x = F.relu(self.conv5_3(x))
        p16 = self.prob16(x)
        p16=F.upsample_nearest(p16, scale_factor=16)

        return p1/16+p2/8+p4/4+p8/2+p16
classification.py 文件源码 项目:samples 作者: delta-onera 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.max_pool2d(self.conv1(x), 2)
        x = F.max_pool2d(self.conv2(x), 2)
        x = x.view(-1, 1024)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x
darknet.py 文件源码 项目:pytorch-yolo2 作者: marvis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.max_pool2d(F.pad(x, (0,1,0,1), mode='replicate'), 2, stride=1)
        return x
roi_align.py 文件源码 项目:faster-rcnn.pytorch 作者: jwyang 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def forward(self, features, rois):
        x =  RoIAlignFunction(self.aligned_height+1, self.aligned_width+1,
                                self.spatial_scale)(features, rois)
        return max_pool2d(x, kernel_size=2, stride=1)
hourglass.py 文件源码 项目:pytorch-pose 作者: bearpaw 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _hour_glass_forward(self, n, x):
        up1 = self.hg[n-1][0](x)
        low1 = F.max_pool2d(x, 2, stride=2)
        low1 = self.hg[n-1][1](low1)

        if n > 1:
            low2 = self._hour_glass_forward(n-1, low1)
        else:
            low2 = self.hg[n-1][3](low1)
        low3 = self.hg[n-1][2](low2)
        up2 = self.upsample(low3)
        out = up1 + up2
        return out
lenet.py 文件源码 项目:nn-transfer 作者: gzuidhof 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out
simplenet.py 文件源码 项目:nn-transfer 作者: gzuidhof 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, x):
        out = F.relu(self.bn(self.conv1(x)))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = self.fc1(out)
        return out
wideresnet.py 文件源码 项目:pretrained-models.pytorch 作者: Cadene 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def define_model(params):
    def conv2d(input, params, base, stride=1, pad=0):
        return F.conv2d(input, params[base + '.weight'],
                        params[base + '.bias'], stride, pad)

    def group(input, params, base, stride, n):
        o = input
        for i in range(0,n):
            b_base = ('%s.block%d.conv') % (base, i)
            x = o
            o = conv2d(x, params, b_base + '0')
            o = F.relu(o)
            o = conv2d(o, params, b_base + '1', stride=i==0 and stride or 1, pad=1)
            o = F.relu(o)
            o = conv2d(o, params, b_base + '2')
            if i == 0:
                o += conv2d(x, params, b_base + '_dim', stride=stride)
            else:
                o += x
            o = F.relu(o)
        return o

    # determine network size by parameters
    blocks = [sum([re.match('group%d.block\d+.conv0.weight'%j, k) is not None
                   for k in params.keys()]) for j in range(4)]

    def f(input, params, pooling_classif=True):
        o = F.conv2d(input, params['conv0.weight'], params['conv0.bias'], 2, 3)
        o = F.relu(o)
        o = F.max_pool2d(o, 3, 2, 1)
        o_g0 = group(o, params, 'group0', 1, blocks[0])
        o_g1 = group(o_g0, params, 'group1', 2, blocks[1])
        o_g2 = group(o_g1, params, 'group2', 2, blocks[2])
        o_g3 = group(o_g2, params, 'group3', 2, blocks[3])
        if pooling_classif:
            o = F.avg_pool2d(o_g3, 7, 1, 0)
            o = o.view(o.size(0), -1)
            o = F.linear(o, params['fc.weight'], params['fc.bias'])
        return o

    return f
my_inception.py 文件源码 项目:intel-cervical-cancer 作者: wangg12 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
my_inception.py 文件源码 项目:intel-cervical-cancer 作者: wangg12 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return torch.cat(outputs, 1)
inception.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
inception.py 文件源码 项目:pytorch-playground 作者: aaron-xichen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return torch.cat(outputs, 1)
neural_networks_tutorial.py 文件源码 项目:tutorials 作者: pytorch 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
BoxMNIST.py 文件源码 项目:Athena 作者: bakhyeonjae 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), 2)
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, 64*7*7)   # reshape Variable
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


问题


面经


文章

微信
公众号

扫码关注公众号