def forward(self, x, *args, **kwargs):
x = F.relu(self.affine1(x))
return x
python类relu()的实例源码
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
# out = self.layer4(out)
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
# Register a backward hook
x.register_hook(myGradientHook)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def forward(self, x):
x = F.elu(F.max_pool2d(self.conv1(x), 2))
x = F.elu(F.max_pool2d(self.bn2(self.conv2(x)), 2))
x = F.elu(F.max_pool2d(self.bn3(self.conv3(x)), 2))
x = F.elu(F.max_pool2d(self.bn4(self.conv4(x)), 2))
x = x.view(-1, 750)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def forward(self, x):
bottleneck = self.conv_reduce.forward(x)
bottleneck = F.relu(bottleneck, inplace=True)
bottleneck = self.conv_conv.forward(bottleneck)
bottleneck = F.relu(bottleneck, inplace=True)
bottleneck = self.conv_expand.forward(bottleneck)
return x + bottleneck
def forward(self, input):
return self.model(input)
# TODO: fix relu bug
def forward(self, x):
bottleneck = self.conv_reduce.forward(x)
bottleneck = F.relu(bottleneck, inplace=True)
bottleneck = self.conv_conv.forward(bottleneck)
bottleneck = F.relu(bottleneck, inplace=True)
bottleneck = self.conv_expand.forward(bottleneck)
return x + bottleneck
def forward(self, input):
return self.model(input)
# TODO: fix relu bug
def forward(self, input, inputV):
x1 = F.leaky_relu(self.down1(input), 0.2, True)
x2 = F.leaky_relu(self.down2(x1), 0.2, True)
x3 = F.leaky_relu(self.down3(x2), 0.2, True)
x4 = F.leaky_relu(self.down4(x3), 0.2, True)
x5 = F.leaky_relu(self.down5(x4), 0.2, True)
x6 = F.leaky_relu(self.down6(x5), 0.2, True)
x7 = F.leaky_relu(self.down7(x6), 0.2, True)
x8 = F.relu(self.down8(x7), True)
v1 = F.leaky_relu(self.downV1(inputV), 0.2, True)
v2 = F.leaky_relu(self.downV2(v1), 0.2, True)
v3 = F.leaky_relu(self.downV3(v2), 0.2, True)
v4 = F.leaky_relu(self.downV4(v3), 0.2, True)
v5 = F.leaky_relu(self.downV5(v4), 0.2, True)
v6 = F.leaky_relu(self.downV6(v5), 0.2, True)
v7 = F.leaky_relu(self.downV7(v6), 0.2, True)
v8 = F.relu(self.downV8(v7), True)
x = F.relu(self.up8(torch.cat([x8, v8], 1)), True)
x = F.relu(self.up7(torch.cat([x, x7, v7], 1)), True)
x = F.relu(self.up6(torch.cat([x, x6, v6], 1)), True)
x = F.relu(self.up5(torch.cat([x, x5, v5], 1)), True)
x = F.relu(self.up4(torch.cat([x, x4, v4], 1)), True)
x = F.relu(self.up3(torch.cat([x, x3, v3], 1)), True)
x = F.relu(self.up2(torch.cat([x, x2], 1)), True)
x = F.tanh(self.up1(torch.cat([x, x1], 1)))
return x
############################
# D network
###########################
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
out = torch.cat((x, out), 1)
return out
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = torch.cat((x, out), 1)
return out
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = F.avg_pool2d(out, 2)
return out
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.dense3(out)
out = torch.squeeze(F.avg_pool2d(F.relu(self.bn1(out)), 8))
out = F.log_softmax(self.fc(out))
return out
def forward(self, x):
residual = x
basicblock = self.conv_a(x)
basicblock = self.bn_a(basicblock)
basicblock = F.relu(basicblock, inplace=True)
basicblock = self.conv_b(basicblock)
basicblock = self.bn_b(basicblock)
if self.downsample is not None:
residual = self.downsample(x)
return F.relu(residual + basicblock, inplace=True)
def forward(self, x):
x = self.conv_1_3x3(x)
x = F.relu(self.bn_1(x), inplace=True)
x = self.stage_1(x)
x = self.stage_2(x)
x = self.stage_3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return self.classifier(x)
def forward(self, x):
# don't need resnet_feature_2 as it is too large
_, resnet_feature_3, resnet_feature_4, resnet_feature_5 = self.resnet(x)
pyramid_feature_6 = self.pyramid_transformation_6(resnet_feature_5)
pyramid_feature_7 = self.pyramid_transformation_7(F.relu(pyramid_feature_6))
pyramid_feature_5 = self.pyramid_transformation_5(resnet_feature_5)
pyramid_feature_4 = self.pyramid_transformation_4(resnet_feature_4)
upsampled_feature_5 = self._upsample(pyramid_feature_5, pyramid_feature_4)
pyramid_feature_4 = self.upsample_transform_1(
torch.add(upsampled_feature_5, pyramid_feature_4)
)
pyramid_feature_3 = self.pyramid_transformation_3(resnet_feature_3)
upsampled_feature_4 = self._upsample(pyramid_feature_4, pyramid_feature_3)
pyramid_feature_3 = self.upsample_transform_2(
torch.add(upsampled_feature_4, pyramid_feature_3)
)
return (pyramid_feature_3,
pyramid_feature_4,
pyramid_feature_5,
pyramid_feature_6,
pyramid_feature_7)