def classdef(self, nodelist):
# classdef: 'class' NAME ['(' [testlist] ')'] ':' suite
name = nodelist[1][1]
doc = self.get_docstring(nodelist[-1])
if nodelist[2][0] == token.COLON:
bases = []
elif nodelist[3][0] == token.RPAR:
bases = []
else:
bases = self.com_bases(nodelist[3])
# code for class
code = self.com_node(nodelist[-1])
if doc is not None:
assert isinstance(code, Stmt)
assert isinstance(code.nodes[0], Discard)
del code.nodes[0]
return Class(name, bases, doc, code, lineno=nodelist[1][2])
python类COLON的实例源码
def com_subscriptlist(self, primary, nodelist, assigning):
# slicing: simple_slicing | extended_slicing
# simple_slicing: primary "[" short_slice "]"
# extended_slicing: primary "[" slice_list "]"
# slice_list: slice_item ("," slice_item)* [","]
# backwards compat slice for '[i:j]'
if len(nodelist) == 2:
sub = nodelist[1]
if (sub[1][0] == token.COLON or \
(len(sub) > 2 and sub[2][0] == token.COLON)) and \
sub[-1][0] != symbol.sliceop:
return self.com_slice(primary, sub, assigning)
subscripts = []
for i in range(1, len(nodelist), 2):
subscripts.append(self.com_subscript(nodelist[i]))
return Subscript(primary, assigning, subscripts,
lineno=extractLineNo(nodelist))
def classdef(self, nodelist):
# classdef: 'class' NAME ['(' [testlist] ')'] ':' suite
name = nodelist[1][1]
doc = self.get_docstring(nodelist[-1])
if nodelist[2][0] == token.COLON:
bases = []
elif nodelist[3][0] == token.RPAR:
bases = []
else:
bases = self.com_bases(nodelist[3])
# code for class
code = self.com_node(nodelist[-1])
if doc is not None:
assert isinstance(code, Stmt)
assert isinstance(code.nodes[0], Discard)
del code.nodes[0]
return Class(name, bases, doc, code, lineno=nodelist[1][2])
def com_subscriptlist(self, primary, nodelist, assigning):
# slicing: simple_slicing | extended_slicing
# simple_slicing: primary "[" short_slice "]"
# extended_slicing: primary "[" slice_list "]"
# slice_list: slice_item ("," slice_item)* [","]
# backwards compat slice for '[i:j]'
if len(nodelist) == 2:
sub = nodelist[1]
if (sub[1][0] == token.COLON or \
(len(sub) > 2 and sub[2][0] == token.COLON)) and \
sub[-1][0] != symbol.sliceop:
return self.com_slice(primary, sub, assigning)
subscripts = []
for i in range(1, len(nodelist), 2):
subscripts.append(self.com_subscript(nodelist[i]))
return Subscript(primary, assigning, subscripts,
lineno=extractLineNo(nodelist))
def classdef(self, nodelist):
# classdef: 'class' NAME ['(' [testlist] ')'] ':' suite
name = nodelist[1][1]
doc = self.get_docstring(nodelist[-1])
if nodelist[2][0] == token.COLON:
bases = []
elif nodelist[3][0] == token.RPAR:
bases = []
else:
bases = self.com_bases(nodelist[3])
# code for class
code = self.com_node(nodelist[-1])
if doc is not None:
assert isinstance(code, Stmt)
assert isinstance(code.nodes[0], Discard)
del code.nodes[0]
return Class(name, bases, doc, code, lineno=nodelist[1][2])
def com_subscriptlist(self, primary, nodelist, assigning):
# slicing: simple_slicing | extended_slicing
# simple_slicing: primary "[" short_slice "]"
# extended_slicing: primary "[" slice_list "]"
# slice_list: slice_item ("," slice_item)* [","]
# backwards compat slice for '[i:j]'
if len(nodelist) == 2:
sub = nodelist[1]
if (sub[1][0] == token.COLON or \
(len(sub) > 2 and sub[2][0] == token.COLON)) and \
sub[-1][0] != symbol.sliceop:
return self.com_slice(primary, sub, assigning)
subscripts = []
for i in range(1, len(nodelist), 2):
subscripts.append(self.com_subscript(nodelist[i]))
return Subscript(primary, assigning, subscripts,
lineno=extractLineNo(nodelist))
def classdef(self, nodelist):
# classdef: 'class' NAME ['(' [testlist] ')'] ':' suite
name = nodelist[1][1]
doc = self.get_docstring(nodelist[-1])
if nodelist[2][0] == token.COLON:
bases = []
elif nodelist[3][0] == token.RPAR:
bases = []
else:
bases = self.com_bases(nodelist[3])
# code for class
code = self.com_node(nodelist[-1])
if doc is not None:
assert isinstance(code, Stmt)
assert isinstance(code.nodes[0], Discard)
del code.nodes[0]
return Class(name, bases, doc, code, lineno=nodelist[1][2])
def com_subscriptlist(self, primary, nodelist, assigning):
# slicing: simple_slicing | extended_slicing
# simple_slicing: primary "[" short_slice "]"
# extended_slicing: primary "[" slice_list "]"
# slice_list: slice_item ("," slice_item)* [","]
# backwards compat slice for '[i:j]'
if len(nodelist) == 2:
sub = nodelist[1]
if (sub[1][0] == token.COLON or \
(len(sub) > 2 and sub[2][0] == token.COLON)) and \
sub[-1][0] != symbol.sliceop:
return self.com_slice(primary, sub, assigning)
subscripts = []
for i in range(1, len(nodelist), 2):
subscripts.append(self.com_subscript(nodelist[i]))
return Subscript(primary, assigning, subscripts,
lineno=extractLineNo(nodelist))
def classdef(self, nodelist):
# classdef: 'class' NAME ['(' [testlist] ')'] ':' suite
name = nodelist[1][1]
doc = self.get_docstring(nodelist[-1])
if nodelist[2][0] == token.COLON:
bases = []
elif nodelist[3][0] == token.RPAR:
bases = []
else:
bases = self.com_bases(nodelist[3])
# code for class
code = self.com_node(nodelist[-1])
if doc is not None:
assert isinstance(code, Stmt)
assert isinstance(code.nodes[0], Discard)
del code.nodes[0]
return Class(name, bases, doc, code, lineno=nodelist[1][2])
def com_subscriptlist(self, primary, nodelist, assigning):
# slicing: simple_slicing | extended_slicing
# simple_slicing: primary "[" short_slice "]"
# extended_slicing: primary "[" slice_list "]"
# slice_list: slice_item ("," slice_item)* [","]
# backwards compat slice for '[i:j]'
if len(nodelist) == 2:
sub = nodelist[1]
if (sub[1][0] == token.COLON or \
(len(sub) > 2 and sub[2][0] == token.COLON)) and \
sub[-1][0] != symbol.sliceop:
return self.com_slice(primary, sub, assigning)
subscripts = []
for i in range(1, len(nodelist), 2):
subscripts.append(self.com_subscript(nodelist[i]))
return Subscript(primary, assigning, subscripts,
lineno=extractLineNo(nodelist))
def parse_for_loop(self):
expr = ast.ForLoop(self.cur_tok, None, None, None)
if not self.expect(token.LPAREN):
return None
self.next()
expr.var = self.parse_id(True)
if not self.expect(token.COLON):
return None
self.next()
expr.collection = self.parse_expr(LOWEST)
if not self.expect(token.RPAREN):
return None
if not self.expect(token.LBRACE):
return None
expr.body = self.parse_block_statement()
return expr
def parse_expr_pairs(self, end):
pairs = {}
if self.cur_is(token.COLON):
self.next()
return pairs
key, val = self.parse_pair()
pairs[key] = val
while self.peek_is(token.COMMA):
self.next()
if self.peek_is(end):
self.next()
return pairs
self.next()
key, val = self.parse_pair()
pairs[key] = val
if not self.expect(end):
return None
return pairs
def com_dictorsetmaker(self, nodelist):
# dictorsetmaker: ( (test ':' test (comp_for | (',' test ':' test)* [','])) |
# (test (comp_for | (',' test)* [','])) )
assert nodelist[0] == symbol.dictorsetmaker
nodelist = nodelist[1:]
if len(nodelist) == 1 or nodelist[1][0] == token.COMMA:
# set literal
items = []
for i in range(0, len(nodelist), 2):
items.append(self.com_node(nodelist[i]))
return Set(items, lineno=items[0].lineno)
elif nodelist[1][0] == symbol.comp_for:
# set comprehension
expr = self.com_node(nodelist[0])
return self.com_comprehension(expr, None, nodelist[1], 'set')
elif len(nodelist) > 3 and nodelist[3][0] == symbol.comp_for:
# dict comprehension
assert nodelist[1][0] == token.COLON
key = self.com_node(nodelist[0])
value = self.com_node(nodelist[2])
return self.com_comprehension(key, value, nodelist[3], 'dict')
else:
# dict literal
items = []
for i in range(0, len(nodelist), 4):
items.append((self.com_node(nodelist[i]),
self.com_node(nodelist[i+2])))
return Dict(items, lineno=items[0][0].lineno)
def com_subscript(self, node):
# slice_item: expression | proper_slice | ellipsis
ch = node[1]
t = ch[0]
if t == token.DOT and node[2][0] == token.DOT:
return Ellipsis()
if t == token.COLON or len(node) > 2:
return self.com_sliceobj(node)
return self.com_node(ch)
def com_sliceobj(self, node):
# proper_slice: short_slice | long_slice
# short_slice: [lower_bound] ":" [upper_bound]
# long_slice: short_slice ":" [stride]
# lower_bound: expression
# upper_bound: expression
# stride: expression
#
# Note: a stride may be further slicing...
items = []
if node[1][0] == token.COLON:
items.append(Const(None))
i = 2
else:
items.append(self.com_node(node[1]))
# i == 2 is a COLON
i = 3
if i < len(node) and node[i][0] == symbol.test:
items.append(self.com_node(node[i]))
i = i + 1
else:
items.append(Const(None))
# a short_slice has been built. look for long_slice now by looking
# for strides...
for j in range(i, len(node)):
ch = node[j]
if len(ch) == 2:
items.append(Const(None))
else:
items.append(self.com_node(ch[2]))
return Sliceobj(items, lineno=extractLineNo(node))
def com_dictorsetmaker(self, nodelist):
# dictorsetmaker: ( (test ':' test (comp_for | (',' test ':' test)* [','])) |
# (test (comp_for | (',' test)* [','])) )
assert nodelist[0] == symbol.dictorsetmaker
nodelist = nodelist[1:]
if len(nodelist) == 1 or nodelist[1][0] == token.COMMA:
# set literal
items = []
for i in range(0, len(nodelist), 2):
items.append(self.com_node(nodelist[i]))
return Set(items, lineno=items[0].lineno)
elif nodelist[1][0] == symbol.comp_for:
# set comprehension
expr = self.com_node(nodelist[0])
return self.com_comprehension(expr, None, nodelist[1], 'set')
elif len(nodelist) > 3 and nodelist[3][0] == symbol.comp_for:
# dict comprehension
assert nodelist[1][0] == token.COLON
key = self.com_node(nodelist[0])
value = self.com_node(nodelist[2])
return self.com_comprehension(key, value, nodelist[3], 'dict')
else:
# dict literal
items = []
for i in range(0, len(nodelist), 4):
items.append((self.com_node(nodelist[i]),
self.com_node(nodelist[i+2])))
return Dict(items, lineno=items[0][0].lineno)
def com_subscript(self, node):
# slice_item: expression | proper_slice | ellipsis
ch = node[1]
t = ch[0]
if t == token.DOT and node[2][0] == token.DOT:
return Ellipsis()
if t == token.COLON or len(node) > 2:
return self.com_sliceobj(node)
return self.com_node(ch)
def com_sliceobj(self, node):
# proper_slice: short_slice | long_slice
# short_slice: [lower_bound] ":" [upper_bound]
# long_slice: short_slice ":" [stride]
# lower_bound: expression
# upper_bound: expression
# stride: expression
#
# Note: a stride may be further slicing...
items = []
if node[1][0] == token.COLON:
items.append(Const(None))
i = 2
else:
items.append(self.com_node(node[1]))
# i == 2 is a COLON
i = 3
if i < len(node) and node[i][0] == symbol.test:
items.append(self.com_node(node[i]))
i = i + 1
else:
items.append(Const(None))
# a short_slice has been built. look for long_slice now by looking
# for strides...
for j in range(i, len(node)):
ch = node[j]
if len(ch) == 2:
items.append(Const(None))
else:
items.append(self.com_node(ch[2]))
return Sliceobj(items, lineno=extractLineNo(node))
def com_dictorsetmaker(self, nodelist):
# dictorsetmaker: ( (test ':' test (comp_for | (',' test ':' test)* [','])) |
# (test (comp_for | (',' test)* [','])) )
assert nodelist[0] == symbol.dictorsetmaker
nodelist = nodelist[1:]
if len(nodelist) == 1 or nodelist[1][0] == token.COMMA:
# set literal
items = []
for i in range(0, len(nodelist), 2):
items.append(self.com_node(nodelist[i]))
return Set(items, lineno=items[0].lineno)
elif nodelist[1][0] == symbol.comp_for:
# set comprehension
expr = self.com_node(nodelist[0])
return self.com_comprehension(expr, None, nodelist[1], 'set')
elif len(nodelist) > 3 and nodelist[3][0] == symbol.comp_for:
# dict comprehension
assert nodelist[1][0] == token.COLON
key = self.com_node(nodelist[0])
value = self.com_node(nodelist[2])
return self.com_comprehension(key, value, nodelist[3], 'dict')
else:
# dict literal
items = []
for i in range(0, len(nodelist), 4):
items.append((self.com_node(nodelist[i]),
self.com_node(nodelist[i+2])))
return Dict(items, lineno=items[0][0].lineno)
def com_subscript(self, node):
# slice_item: expression | proper_slice | ellipsis
ch = node[1]
t = ch[0]
if t == token.DOT and node[2][0] == token.DOT:
return Ellipsis()
if t == token.COLON or len(node) > 2:
return self.com_sliceobj(node)
return self.com_node(ch)
def com_sliceobj(self, node):
# proper_slice: short_slice | long_slice
# short_slice: [lower_bound] ":" [upper_bound]
# long_slice: short_slice ":" [stride]
# lower_bound: expression
# upper_bound: expression
# stride: expression
#
# Note: a stride may be further slicing...
items = []
if node[1][0] == token.COLON:
items.append(Const(None))
i = 2
else:
items.append(self.com_node(node[1]))
# i == 2 is a COLON
i = 3
if i < len(node) and node[i][0] == symbol.test:
items.append(self.com_node(node[i]))
i = i + 1
else:
items.append(Const(None))
# a short_slice has been built. look for long_slice now by looking
# for strides...
for j in range(i, len(node)):
ch = node[j]
if len(ch) == 2:
items.append(Const(None))
else:
items.append(self.com_node(ch[2]))
return Sliceobj(items, lineno=extractLineNo(node))
def com_dictorsetmaker(self, nodelist):
# dictorsetmaker: ( (test ':' test (comp_for | (',' test ':' test)* [','])) |
# (test (comp_for | (',' test)* [','])) )
assert nodelist[0] == symbol.dictorsetmaker
nodelist = nodelist[1:]
if len(nodelist) == 1 or nodelist[1][0] == token.COMMA:
# set literal
items = []
for i in range(0, len(nodelist), 2):
items.append(self.com_node(nodelist[i]))
return Set(items, lineno=items[0].lineno)
elif nodelist[1][0] == symbol.comp_for:
# set comprehension
expr = self.com_node(nodelist[0])
return self.com_comprehension(expr, None, nodelist[1], 'set')
elif len(nodelist) > 3 and nodelist[3][0] == symbol.comp_for:
# dict comprehension
assert nodelist[1][0] == token.COLON
key = self.com_node(nodelist[0])
value = self.com_node(nodelist[2])
return self.com_comprehension(key, value, nodelist[3], 'dict')
else:
# dict literal
items = []
for i in range(0, len(nodelist), 4):
items.append((self.com_node(nodelist[i]),
self.com_node(nodelist[i+2])))
return Dict(items, lineno=items[0][0].lineno)
def com_subscript(self, node):
# slice_item: expression | proper_slice | ellipsis
ch = node[1]
t = ch[0]
if t == token.DOT and node[2][0] == token.DOT:
return Ellipsis()
if t == token.COLON or len(node) > 2:
return self.com_sliceobj(node)
return self.com_node(ch)
def com_sliceobj(self, node):
# proper_slice: short_slice | long_slice
# short_slice: [lower_bound] ":" [upper_bound]
# long_slice: short_slice ":" [stride]
# lower_bound: expression
# upper_bound: expression
# stride: expression
#
# Note: a stride may be further slicing...
items = []
if node[1][0] == token.COLON:
items.append(Const(None))
i = 2
else:
items.append(self.com_node(node[1]))
# i == 2 is a COLON
i = 3
if i < len(node) and node[i][0] == symbol.test:
items.append(self.com_node(node[i]))
i = i + 1
else:
items.append(Const(None))
# a short_slice has been built. look for long_slice now by looking
# for strides...
for j in range(i, len(node)):
ch = node[j]
if len(ch) == 2:
items.append(Const(None))
else:
items.append(self.com_node(ch[2]))
return Sliceobj(items, lineno=extractLineNo(node))
def com_dictorsetmaker(self, nodelist):
# dictorsetmaker: ( (test ':' test (comp_for | (',' test ':' test)* [','])) |
# (test (comp_for | (',' test)* [','])) )
assert nodelist[0] == symbol.dictorsetmaker
nodelist = nodelist[1:]
if len(nodelist) == 1 or nodelist[1][0] == token.COMMA:
# set literal
items = []
for i in range(0, len(nodelist), 2):
items.append(self.com_node(nodelist[i]))
return Set(items, lineno=items[0].lineno)
elif nodelist[1][0] == symbol.comp_for:
# set comprehension
expr = self.com_node(nodelist[0])
return self.com_comprehension(expr, None, nodelist[1], 'set')
elif len(nodelist) > 3 and nodelist[3][0] == symbol.comp_for:
# dict comprehension
assert nodelist[1][0] == token.COLON
key = self.com_node(nodelist[0])
value = self.com_node(nodelist[2])
return self.com_comprehension(key, value, nodelist[3], 'dict')
else:
# dict literal
items = []
for i in range(0, len(nodelist), 4):
items.append((self.com_node(nodelist[i]),
self.com_node(nodelist[i+2])))
return Dict(items, lineno=items[0][0].lineno)
def com_subscript(self, node):
# slice_item: expression | proper_slice | ellipsis
ch = node[1]
t = ch[0]
if t == token.DOT and node[2][0] == token.DOT:
return Ellipsis()
if t == token.COLON or len(node) > 2:
return self.com_sliceobj(node)
return self.com_node(ch)
def com_sliceobj(self, node):
# proper_slice: short_slice | long_slice
# short_slice: [lower_bound] ":" [upper_bound]
# long_slice: short_slice ":" [stride]
# lower_bound: expression
# upper_bound: expression
# stride: expression
#
# Note: a stride may be further slicing...
items = []
if node[1][0] == token.COLON:
items.append(Const(None))
i = 2
else:
items.append(self.com_node(node[1]))
# i == 2 is a COLON
i = 3
if i < len(node) and node[i][0] == symbol.test:
items.append(self.com_node(node[i]))
i = i + 1
else:
items.append(Const(None))
# a short_slice has been built. look for long_slice now by looking
# for strides...
for j in range(i, len(node)):
ch = node[j]
if len(ch) == 2:
items.append(Const(None))
else:
items.append(self.com_node(ch[2]))
return Sliceobj(items, lineno=extractLineNo(node))
def parse_array_or_map(self):
self.next()
if self.peek_is(token.COLON) or self.cur_is(token.COLON):
pairs = self.parse_expr_pairs(token.RSQUARE)
return ast.Map(self.cur_tok, pairs)
else:
return ast.Array(self.cur_tok, self.parse_expr_list(token.RSQUARE))
def parse_pair(self):
key = self.parse_expr(DOT)
if not self.expect(token.COLON):
return None
self.next()
value = self.parse_expr(LOWEST)
return key, value
def test_exact_type(self):
self.assertExactTypeEqual('()', token.LPAR, token.RPAR)
self.assertExactTypeEqual('[]', token.LSQB, token.RSQB)
self.assertExactTypeEqual(':', token.COLON)
self.assertExactTypeEqual(',', token.COMMA)
self.assertExactTypeEqual(';', token.SEMI)
self.assertExactTypeEqual('+', token.PLUS)
self.assertExactTypeEqual('-', token.MINUS)
self.assertExactTypeEqual('*', token.STAR)
self.assertExactTypeEqual('/', token.SLASH)
self.assertExactTypeEqual('|', token.VBAR)
self.assertExactTypeEqual('&', token.AMPER)
self.assertExactTypeEqual('<', token.LESS)
self.assertExactTypeEqual('>', token.GREATER)
self.assertExactTypeEqual('=', token.EQUAL)
self.assertExactTypeEqual('.', token.DOT)
self.assertExactTypeEqual('%', token.PERCENT)
self.assertExactTypeEqual('{}', token.LBRACE, token.RBRACE)
self.assertExactTypeEqual('==', token.EQEQUAL)
self.assertExactTypeEqual('!=', token.NOTEQUAL)
self.assertExactTypeEqual('<=', token.LESSEQUAL)
self.assertExactTypeEqual('>=', token.GREATEREQUAL)
self.assertExactTypeEqual('~', token.TILDE)
self.assertExactTypeEqual('^', token.CIRCUMFLEX)
self.assertExactTypeEqual('<<', token.LEFTSHIFT)
self.assertExactTypeEqual('>>', token.RIGHTSHIFT)
self.assertExactTypeEqual('**', token.DOUBLESTAR)
self.assertExactTypeEqual('+=', token.PLUSEQUAL)
self.assertExactTypeEqual('-=', token.MINEQUAL)
self.assertExactTypeEqual('*=', token.STAREQUAL)
self.assertExactTypeEqual('/=', token.SLASHEQUAL)
self.assertExactTypeEqual('%=', token.PERCENTEQUAL)
self.assertExactTypeEqual('&=', token.AMPEREQUAL)
self.assertExactTypeEqual('|=', token.VBAREQUAL)
self.assertExactTypeEqual('^=', token.CIRCUMFLEXEQUAL)
self.assertExactTypeEqual('^=', token.CIRCUMFLEXEQUAL)
self.assertExactTypeEqual('<<=', token.LEFTSHIFTEQUAL)
self.assertExactTypeEqual('>>=', token.RIGHTSHIFTEQUAL)
self.assertExactTypeEqual('**=', token.DOUBLESTAREQUAL)
self.assertExactTypeEqual('//', token.DOUBLESLASH)
self.assertExactTypeEqual('//=', token.DOUBLESLASHEQUAL)
self.assertExactTypeEqual('@', token.AT)
self.assertExactTypeEqual('a**2+b**2==c**2',
NAME, token.DOUBLESTAR, NUMBER,
token.PLUS,
NAME, token.DOUBLESTAR, NUMBER,
token.EQEQUAL,
NAME, token.DOUBLESTAR, NUMBER)
self.assertExactTypeEqual('{1, 2, 3}',
token.LBRACE,
token.NUMBER, token.COMMA,
token.NUMBER, token.COMMA,
token.NUMBER,
token.RBRACE)
self.assertExactTypeEqual('^(x & 0x1)',
token.CIRCUMFLEX,
token.LPAR,
token.NAME, token.AMPER, token.NUMBER,
token.RPAR)