def do(setup_statements, statement):
# extracted from timeit.py
t = timeit.Timer(stmt=statement,
setup="\n".join(setup_statements))
# determine number so that 1.0 <= total time < 10.0
for i in range(1, 10):
number = 10**i
x = t.timeit(number)
if x >= 1.0:
break
return x / number
python类py()的实例源码
def do(setup_statements, statement):
# extracted from timeit.py
t = timeit.Timer(stmt=statement,
setup="\n".join(setup_statements))
# determine number so that 0.2 <= total time < 2.0
for i in range(1, 10):
number = 10**i
x = t.timeit(number)
if x >= 0.5:
break
return x / number
def do(setup_statements, statement):
# extracted from timeit.py
t = timeit.Timer(stmt=statement,
setup="\n".join(setup_statements))
# determine number so that 0.2 <= total time < 2.0
for i in range(1, 10):
number = 10**i
x = t.timeit(number)
if x >= 1.0:
break
return x / number
def do(setup_statements, statement):
# extracted from timeit.py
t = timeit.Timer(stmt=statement,
setup="\n".join(setup_statements))
# determine number so that 1.0 <= total time < 10.0
for i in range(1, 10):
number = 10**i
x = t.timeit(number)
if x >= 1.0:
break
return x / number
def do(setup_statements, statement):
# extracted from timeit.py
t = timeit.Timer(stmt=statement,
setup="\n".join(setup_statements))
# determine number so that 0.2 <= total time < 2.0
for i in range(1, 10):
number = 10**i
x = t.timeit(number)
if x >= 0.5:
break
return x / number
def run(self):
def do(setup_statements, statement):
# extracted from timeit.py
t = timeit.Timer(stmt=statement,
setup="\n".join(setup_statements))
# determine number so that 0.2 <= total time < 2.0
for i in range(1, 10):
number = 10**i
x = t.timeit(number)
if x >= 0.2:
break
return x / number
for curve in ["NIST192p", "NIST224p", "NIST256p", "SECP256k1",
"NIST384p", "NIST521p"]:
S1 = "from ecdsa import six, SigningKey, %s" % curve
S2 = "sk = SigningKey.generate(%s)" % curve
S3 = "msg = six.b('msg')"
S4 = "sig = sk.sign(msg)"
S5 = "vk = sk.get_verifying_key()"
S6 = "vk.verify(sig, msg)"
# We happen to know that .generate() also calculates the
# verifying key, which is the time-consuming part. If the code
# were changed to lazily calculate vk, we'd need to change this
# benchmark to loop over S5 instead of S2
keygen = do([S1], S2)
sign = do([S1,S2,S3], S4)
verf = do([S1,S2,S3,S4,S5], S6)
import ecdsa
c = getattr(ecdsa, curve)
sig = ecdsa.SigningKey.generate(c).sign(ecdsa.six.b("msg"))
print("%9s: siglen=%3d, keygen=%.3fs, sign=%.3fs, verify=%.3fs" \
% (curve, len(sig), keygen, sign, verf))