python类_asarray()的实例源码

roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, output_storage):
        """
        Calculate ROC AUC score.

        Parameters
        ----------
        node : Apply instance
            Symbolic inputs and outputs.
        inputs : list
            Sequence of inputs.
        output_storage : list
            List of mutable 1-element lists.
        """
        if roc_auc_score is None:
            raise RuntimeError("Could not import from sklearn.")
        y_true, y_score = inputs
        print(y_true.shape)
        y_true = np.argmax(y_true, axis=1)
        y_score = np.argmax(y_score, axis=1)
        #print(type(y_true), y_true.shape, type(y_score), y_score.shape)
        try:
            TP = np.sum(y_true[y_score==1]==1)*1. #/ sum(y_true)
            FP = np.sum(y_true[y_score==1]==0)*1. #/ (y_true.shape[0]-sum(y_true))
            prec = TP / (TP+FP+1e-6)
        except ValueError:
            prec = np.nan
        #rvalue = np.array((roc_auc, prec, reca, f1))
        #[0][0]
        output_storage[0][0] = theano._asarray(prec, dtype=config.floatX)
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, output_storage):
        """
        Calculate ROC AUC score.

        Parameters
        ----------
        node : Apply instance
            Symbolic inputs and outputs.
        inputs : list
            Sequence of inputs.
        output_storage : list
            List of mutable 1-element lists.
        """
        if roc_auc_score is None:
            raise RuntimeError("Could not import from sklearn.")
        y_true, y_score = inputs
        y_true = np.argmax(y_true, axis=1)
        y_score = np.argmax(y_score, axis=1)
        try:
            TP = np.sum(y_true[y_score==1]==1)*1. #/ sum(y_true)
            FN = np.sum(y_true[y_score==0]==1)*1. #/ sum(y_true)
            reca = TP / (TP+FN+1e-6)
        except ValueError:
            reca = np.nan
        #rvalue = np.array((roc_auc, prec, reca, f1))
        #[0][0]
        output_storage[0][0] = theano._asarray(reca, dtype=config.floatX)
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, output_storage):
        """
        Calculate ROC AUC score.

        Parameters
        ----------
        node : Apply instance
            Symbolic inputs and outputs.
        inputs : list
            Sequence of inputs.
        output_storage : list
            List of mutable 1-element lists.
        """
        if roc_auc_score is None:
            raise RuntimeError("Could not import from sklearn.")
        y_true, y_score = inputs
        y_true = np.argmax(y_true, axis=1)
        y_score = np.argmax(y_score, axis=1)
        try:
            TP = np.sum(y_true[y_score==1]==1)*1. #/ sum(y_true)
            FP = np.sum(y_true[y_score==1]==0)*1. #/ (y_true.shape[0]-sum(y_true))
            #TN = np.sum(truey[predy==0]==0)*1. / (truey.shape[0]-sum(truey))
            FN = np.sum(y_true[y_score==0]==1)*1. #/ sum(y_true)
            #prec = TP / (TP+FP+1e-6)
            #reca = TP / (TP+FN+1e-6)
            #f1 = 2*prec*reca / (prec+reca+1e-6)
            f1 = 2*TP / (2*TP +FP +FN)
        except ValueError:
            f1 = np.nan
        #rvalue = np.array((roc_auc, prec, reca, f1))
        #[0][0]
        output_storage[0][0] = theano._asarray(f1, dtype=config.floatX)
layer.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def sharedX_value(value, name=None, borrow=None, dtype=None):
    """Share a single value after transforming it to floatX type.

    value: a value
    name: variable name (str)
    borrow: boolean
    dtype: the type of the value when shared. default: theano.config.floatX
    """
    if dtype is None:
        dtype = theano.config.floatX
    return theano.shared(
        theano._asarray(value, dtype=dtype), name=name, borrow=borrow)
layers.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sharedX_value(value, name=None, borrow=None, dtype=None):
    """Share a single value after transforming it to floatX type.
    value: a value
    name: variable name (str)
    borrow: boolean
    dtype: the type of the value when shared. default: theano.config.floatX
    """
    if dtype is None:
        dtype = theano.config.floatX
    return theano.shared(
        theano._asarray(value, dtype=dtype), name=name, borrow=borrow)
tools.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def sharedX_value(value, name=None, borrow=None, dtype=None):
    """Share a single value after transforming it to floatX type.

    value: a value
    name: variable name (str)
    borrow: boolean
    dtype: the type of the value when shared. default: theano.config.floatX
    """
    if dtype is None:
        dtype = theano.config.floatX
    return theano.shared(
        theano._asarray(value, dtype=dtype), name=name, borrow=borrow)
basic_layer.py 文件源码 项目:learning-class-invariant-features 作者: sbelharbi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def sharedX_value(value, name=None, borrow=None, dtype=None):
    """Share a single value after transforming it to floatX type.

    value: a value
    name: variable name (str)
    borrow: boolean
    dtype: the type of the value when shared. default: theano.config.floatX
    """
    if dtype is None:
        dtype = theano.config.floatX
    return theano.shared(
        theano._asarray(value, dtype=dtype), name=name, borrow=borrow)
test_may_share_memory.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_may_share_memory_scipy():
        a = scipy.sparse.csc_matrix(scipy.sparse.eye(5, 3))
        b = scipy.sparse.csc_matrix(scipy.sparse.eye(4, 3))

        def as_ar(a):
            return theano._asarray(a, dtype='int32')
        for a_, b_, rep in [(a, a, True), (b, b, True), (a, b, False),
                            (a, a.data, True), (a, a.indptr, True),
                            (a, a.indices, True), (a, as_ar(a.shape), False),
                            (a.data, a, True), (a.indptr, a, True),
                            (a.indices, a, True), (as_ar(a.shape), a, False),
                            (b, b.data, True), (b, b.indptr, True),
                            (b, b.indices, True), (b, as_ar(b.shape), False),
                            (b.data, b, True), (b.indptr, b, True),
                            (b.indices, b, True), (as_ar(b.shape), b, False),
                            (b.data, a, False), (b.indptr, a, False),
                            (b.indices, a, False), (as_ar(b.shape), a, False)]:

            assert may_share_memory(a_, b_) == rep
            assert may_share_memory(b_, a_) == rep

        # test that it raise error when needed.
        for a_, b_, rep in [(a, (0,), False), (a, 1, False), (a, None, False)]:
            assert may_share_memory(a_, b_, False) == rep
            assert may_share_memory(b_, a_, False) == rep
            try:
                may_share_memory(a_, b_)
                raise Exception("An error was expected")
            except TypeError:
                pass
            try:
                may_share_memory(b_, a_)
                raise Exception("An error was expected")
            except TypeError:
                pass
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_may_share_memory():
    a = scipy.sparse.csc_matrix(scipy.sparse.eye(5, 3))
    b = scipy.sparse.csc_matrix(scipy.sparse.eye(4, 3))
    as_ar = lambda a: theano._asarray(a, dtype='int32')
    for a_, b_, rep in [(a, a, True),
                        (b, b, True),
                        (a, b, False),
                        (a, a.data, True),
                        (a, a.indptr, True),
                        (a, a.indices, True),
                        (a, as_ar(a.shape), False),
                        (a.data, a, True),
                        (a.indptr, a, True),
                        (a.indices, a, True),
                        (as_ar(a.shape), a, False),
                        (b, b.data, True),
                        (b, b.indptr, True),
                        (b, b.indices, True),
                        (b, as_ar(b.shape), False),
                        (b.data, b, True),
                        (b.indptr, b, True),
                        (b.indices, b, True),
                        (as_ar(b.shape), b, False),
                        (b.data, a, False),
                        (b.indptr, a, False),
                        (b.indices, a, False),
                        (as_ar(b.shape), a, False),
                        (a.transpose(), a, True),
                        (b.transpose(), b, True),
                        (a.transpose(), b, False),
                        (b.transpose(), a, False),
                        ]:

        assert SparseType.may_share_memory(a_, b_) == rep
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, out):
        (csm,) = inputs
        out[0][0] = csm.data
        if str(csm.data.dtype) == 'int32':
            out[0][0] = theano._asarray(out[0][0], dtype='int32')
        # backport
        out[1][0] = theano._asarray(csm.indices, dtype='int32')
        out[2][0] = theano._asarray(csm.indptr, dtype='int32')
        out[3][0] = theano._asarray(csm.shape, dtype='int32')
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, outputs):
        (x, ind1, ind2) = inputs
        (out,) = outputs
        assert _is_sparse(x)
        out[0] = theano._asarray(x[ind1, ind2], x.dtype)
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, outputs):
        (x, y) = inputs
        (out,) = outputs
        assert _is_dense(y)

        # The asarray is needed as in some case, this return a
        # numpy.matrixlib.defmatrix.matrix object and not an ndarray.
        out[0] = theano._asarray(x + y, dtype=node.outputs[0].type.dtype)
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, out):
        x, y = inputs
        out = out[0]
        x_is_sparse = _is_sparse(x)
        y_is_sparse = _is_sparse(y)

        if not x_is_sparse and not y_is_sparse:
            raise TypeError(x)

        rval = x * y

        if x_is_sparse and y_is_sparse:
            rval = rval.toarray()

        out[0] = theano._asarray(rval, dtype=node.outputs[0].dtype)
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def perform(self, node, inputs, outputs):
        (a_val, a_ind, a_ptr, a_nrows, b) = inputs
        (out,) = outputs
        a = scipy.sparse.csc_matrix((a_val, a_ind, a_ptr),
                                    (a_nrows, b.shape[0]),
                                    copy=False)
        # out[0] = a.dot(b)
        out[0] = theano._asarray(a * b, dtype=node.outputs[0].type.dtype)
        assert _is_dense(out[0])  # scipy 0.7 automatically converts to dense
test_opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_add_canonizer_problem0():
    n_segments = 10
    label = lscalar('label')
    segment_labels = label + theano._asarray([0] * n_segments, dtype='int64')

    r = segment_labels * 5
    f = function([label], r)
test_blas.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_gemv_dimensions(self):
        A = T.matrix('A')
        x, y = T.vectors('x', 'y')
        alpha = theano.shared(theano._asarray(1.0, dtype=config.floatX),
                name='alpha')
        beta = theano.shared(theano._asarray(1.0, dtype=config.floatX),
                name='beta')

        z = beta * y + alpha * T.dot(A, x)
        f = theano.function([A, x, y], z)

        # Matrix value
        A_val = numpy.ones((5, 3), dtype=config.floatX)
        # Different vector length
        ones_3 = numpy.ones(3, dtype=config.floatX)
        ones_4 = numpy.ones(4, dtype=config.floatX)
        ones_5 = numpy.ones(5, dtype=config.floatX)
        ones_6 = numpy.ones(6, dtype=config.floatX)

        f(A_val, ones_3, ones_5)
        f(A_val[::-1, ::-1], ones_3, ones_5)
        self.assertRaises(ValueError, f, A_val, ones_4, ones_5)
        self.assertRaises(ValueError, f, A_val, ones_3, ones_6)
        self.assertRaises(ValueError, f, A_val, ones_4, ones_6)

# The following gemv tests were added in March 2011 by Ian Goodfellow
# and are based on the gemv tests from scipy
# http://projects.scipy.org/scipy/browser/trunk/scipy/linalg/tests/test_fblas.py?rev=6803
# NOTE: At the time these tests were written, theano did not have a
# conjugate function. If such a thing is ever added, the tests involving
# conjugate should be ported over as well.
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _numpy_true_div(x, y):
    """Performs true division, and cast the result in the type we expect.

    We define that function so we can use it in TrueDivTester.expected,
    because simply calling numpy.true_divide could cause a dtype mismatch.
    """
    out = numpy.true_divide(x, y)
    # Use floatX as the result of int / int
    if x.dtype in tensor.discrete_dtypes and y.dtype in tensor.discrete_dtypes:
        out = theano._asarray(out, dtype=config.floatX)
    return out
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def test_or(self):
        for dtype in self.dtype:
            x, y = vector(dtype=dtype), vector(dtype=dtype)
            fn = inplace_func([x, y], x | y)
            l = theano._asarray([0, 0, 1, 1], dtype=dtype)
            r = theano._asarray([0, 1, 0, 1], dtype=dtype)
            v = fn(l, r)
            self.assertTrue(numpy.all(v == (operator.or_(l, r))), (l, r, v))
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_xor(self):
        for dtype in self.dtype:
            x, y = vector(dtype=dtype), vector(dtype=dtype)
            fn = inplace_func([x, y], x ^ y)
            ix = x
            ix = inplace.xor_inplace(ix, y)
            gn = inplace_func([x, y], ix)
            l = theano._asarray([0, 0, 1, 1], dtype=dtype)
            r = theano._asarray([0, 1, 0, 1], dtype=dtype)
            v = fn(l, r)
            self.assertTrue(numpy.all(v == (operator.xor(l, r))), (l, r, v))
            v = gn(l, r)
            # test the in-place stuff
            self.assertTrue(numpy.all(l == numpy.asarray([0, 1, 1, 0])), l)
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_and(self):
        for dtype in self.dtype:
            x, y = vector(dtype=dtype), vector(dtype=dtype)
            fn = inplace_func([x, y], x & y)
            l = theano._asarray([0, 0, 1, 1], dtype=dtype)
            r = theano._asarray([0, 1, 0, 1], dtype=dtype)
            v = fn(l, r)
            self.assertTrue(numpy.all(v == (operator.and_(l, r))), (l, r, v))


问题


面经


文章

微信
公众号

扫码关注公众号