python类TensorType()的实例源码

theano_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def placeholder(shape=None, ndim=None, dtype=_FLOATX, sparse=False, name=None):
    '''Instantiate an input data placeholder variable.
    '''
    if shape is None and ndim is None:
        raise Exception('Specify either a shape or ndim value.')
    if shape is not None:
        ndim = len(shape)
    else:
        shape = tuple([None for _ in range(ndim)])

    broadcast = (False,) * ndim
    if sparse:
        _assert_sparse_module()
        x = th_sparse_module.csr_matrix(name=name, dtype=dtype)
    else:
        x = T.TensorType(dtype, broadcast)(name)
    x._keras_shape = shape
    x._uses_learning_phase = False
    return x
theano_backend.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 58 收藏 0 点赞 0 评论 0
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    """Instantiate an input data placeholder variable.
    """
    if dtype is None:
        dtype = floatx()
    if shape is None and ndim is None:
        raise ValueError('Specify either a shape or ndim value.')
    if shape is not None:
        ndim = len(shape)
    else:
        shape = tuple([None for _ in range(ndim)])

    broadcast = (False,) * ndim
    if sparse:
        _assert_sparse_module()
        x = th_sparse_module.csr_matrix(name=name, dtype=dtype)
    else:
        x = T.TensorType(dtype, broadcast)(name)
    x._keras_shape = shape
    x._uses_learning_phase = False
    return x
fr3dnet_trainer.py 文件源码 项目:luna16 作者: gzuidhof 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self):
        metric_names = ['Loss','L2','Accuracy']
        super(Fr3dNetTrainer, self).__init__(metric_names)

        tensor5 = T.TensorType(theano.config.floatX, (False,) * 5)
        input_var = tensor5('inputs')
        target_var = T.ivector('targets')

        logging.info("Defining network")
        net = fr3dnet.define_network(input_var)
        self.network = net
        train_fn, val_fn, l_r = fr3dnet.define_updates(net, input_var, target_var)

        self.train_fn = train_fn
        self.val_fn = val_fn
        self.l_r = l_r
theano_backend.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    '''Instantiate an input data placeholder variable.
    '''
    if dtype is None:
        dtype = floatx()
    if shape is None and ndim is None:
        raise ValueError('Specify either a shape or ndim value.')
    if shape is not None:
        ndim = len(shape)
    else:
        shape = tuple([None for _ in range(ndim)])

    broadcast = (False,) * ndim
    if sparse:
        _assert_sparse_module()
        x = th_sparse_module.csr_matrix(name=name, dtype=dtype)
    else:
        x = T.TensorType(dtype, broadcast)(name)
    x._keras_shape = shape
    x._uses_learning_phase = False
    return x
fr3dnet_trainer.py 文件源码 项目:kaggle_dsb 作者: syagev 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self):
        metric_names = ['Loss','L2','Accuracy']
        super(Fr3dNetTrainer, self).__init__(metric_names)

        tensor5 = T.TensorType(theano.config.floatX, (False,) * 5)
        input_var = tensor5('inputs')
        target_var = T.ivector('targets')

        logging.info("Defining network")
        net = fr3dnet.define_network(input_var)
        self.network = net
        train_fn, val_fn, l_r = fr3dnet.define_updates(net, input_var, target_var)

        self.train_fn = train_fn
        self.val_fn = val_fn
        self.l_r = l_r
theano_backend.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    """Instantiate an input data placeholder variable.
    """
    if dtype is None:
        dtype = floatx()
    if shape is None and ndim is None:
        raise ValueError('Specify either a shape or ndim value.')
    if shape is not None:
        ndim = len(shape)
    else:
        shape = tuple([None for _ in range(ndim)])

    broadcast = (False,) * ndim
    if sparse:
        _assert_sparse_module()
        x = th_sparse_module.csr_matrix(name=name, dtype=dtype)
    else:
        x = T.TensorType(dtype, broadcast)(name)
    x._keras_shape = shape
    x._uses_learning_phase = False
    return x
theano_backend.py 文件源码 项目:keras_superpixel_pooling 作者: parag2489 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    """Instantiate an input data placeholder variable.
    """
    if dtype is None:
        dtype = floatx()
    if shape is None and ndim is None:
        raise ValueError('Specify either a shape or ndim value.')
    if shape is not None:
        ndim = len(shape)
    else:
        shape = tuple([None for _ in range(ndim)])

    name = _prepare_name(name, 'placeholder')
    broadcast = (False,) * ndim
    if sparse:
        _assert_sparse_module()
        x = th_sparse_module.csr_matrix(name=name, dtype=dtype)
    else:
        x = T.TensorType(dtype, broadcast)(name)
    x._keras_shape = shape
    x._uses_learning_phase = False
    return x
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def test_op_sd(self):
        for format in sparse.sparse_formats:
            for dtype in sparse.all_dtypes:
                variable, data = sparse_random_inputs(format,
                                                      shape=(10, 10),
                                                      out_dtype=dtype,
                                                      n=2,
                                                      p=0.1)
                variable[1] = tensor.TensorType(dtype=dtype,
                                                broadcastable=(False, False))()
                data[1] = data[1].toarray()

                f = theano.function(variable, self.op(*variable))

                tested = f(*data)
                expected = numpy.dot(data[0].toarray(), data[1])

                assert tested.format == format
                assert tested.dtype == expected.dtype
                tested = tested.toarray()
                utt.assert_allclose(tested, expected)
basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _is_sparse_variable(x):
    """

    Returns
    -------
    boolean
        True iff x is a L{SparseVariable} (and not a L{tensor.TensorType},
        for instance).

    """
    if not isinstance(x, gof.Variable):
        raise NotImplementedError("this function should only be called on "
                                  "*variables* (of type sparse.SparseType "
                                  "or tensor.TensorType, for instance), not ",
                                  x)
    return isinstance(x.type, SparseType)
test_elemwise.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_infer_shape(self):

        for s_left, s_right in [((5, 6), (5, 6)),
                           ((5, 6), (5, 1)),
                           ((5, 6), (1, 6)),
                           ((5, 1), (5, 6)),
                           ((1, 6), (5, 6)),
                           ((2, 3, 4, 5), (2, 3, 4, 5)),
                           ((2, 3, 4, 5), (2, 3, 1, 5)),
                            ((2, 3, 4, 5), (1, 3, 4, 5)),
                            ((2, 1, 4, 5), (2, 3, 4, 5)),
                            ((2, 3, 4, 1), (2, 3, 4, 5))]:
            dtype = theano.config.floatX
            t_left = TensorType(dtype, [(entry == 1) for entry in s_left])()
            t_right = TensorType(dtype, [(entry == 1) for entry in s_right])()
            t_left_val = numpy.zeros(s_left, dtype=dtype)
            t_right_val = numpy.zeros(s_right, dtype=dtype)
            self._compile_and_check([t_left, t_right],
                            [Elemwise(scalar.add)(t_left, t_right)],
                            [t_left_val, t_right_val], Elemwise)
test_opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_recursive_lift(self):
        v = T.vector(dtype="float64")
        m = T.matrix(dtype="float64")
        out = ((v + 42) * (m + 84)).T
        g = FunctionGraph([v, m], [out])
        init_str_g = ("[InplaceDimShuffle{1,0}(Elemwise{mul,no_inplace}"
                      "(InplaceDimShuffle{x,0}(Elemwise{add,no_inplace}"
                      "(<TensorType(float64, vector)>, "
                      "InplaceDimShuffle{x}(TensorConstant{42}))), "
                      "Elemwise{add,no_inplace}"
                      "(<TensorType(float64, matrix)>, "
                      "InplaceDimShuffle{x,x}(TensorConstant{84}))))]")
        self.assertTrue(str(g) == init_str_g)
        new_out = local_dimshuffle_lift.transform(g.outputs[0].owner)[0]
        new_g = FunctionGraph(g.inputs, [new_out])
        opt_str_g = ("[Elemwise{mul,no_inplace}(Elemwise{add,no_inplace}"
                     "(InplaceDimShuffle{0,x}(<TensorType(float64, vector)>), "
                     "InplaceDimShuffle{x,x}(TensorConstant{42})), "
                     "Elemwise{add,no_inplace}(InplaceDimShuffle{1,0}"
                     "(<TensorType(float64, matrix)>), "
                     "InplaceDimShuffle{x,x}(TensorConstant{84})))]")
        self.assertTrue(str(new_g) == opt_str_g)
        # Check stacktrace was copied over correctly after opt was applied
        self.assertTrue(check_stack_trace(new_g, ops_to_check='all'))
test_opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_eq(self):
        x = T.dmatrix()
        y = T.dmatrix()
        f = theano.function([x, y], T.eq(x, y), mode=self.mode)
        vx = numpy.random.rand(5, 4)
        vy = numpy.random.rand(5, 4)
        f(vx, vy)
        topo = f.maker.fgraph.toposort()
        assert len(topo) == 1
        assert isinstance(topo[0].op, T.Elemwise)
        assert isinstance(topo[0].op.scalar_op, theano.scalar.EQ)
        f2 = theano.function([x], T.eq(x, x), mode=self.mode)
        assert numpy.all(f2(vx) == numpy.ones((5, 4)))
        topo2 = f2.maker.fgraph.toposort()
        # Shape_i{1}(<TensorType(float64, matrix)>), Shape_i{0}(<TensorType(float64, matrix)>), Alloc([[1]], Shape_i{0}.0, Shape_i{1}.0
        assert len(topo2) == 3
        assert isinstance(topo2[-1].op, T.Alloc)
test_opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_local_reduce_broadcast_some_0(self):
        for fct in [tensor.sum, tensor.all, tensor.any, tensor.prod,
                    tensor.max, tensor.min]:
            x = T.TensorType('int64', (True, False, True))()
            f = theano.function([x], [fct(x, axis=[0, 1])], mode=self.mode)

            order = f.maker.fgraph.toposort()
            assert 1 == sum([isinstance(node.op, T.CAReduce)
                             for node in order])

            node = [node for node in order if isinstance(node.op,
                                                         tensor.CAReduce)][0]

            op = node.op
            assert isinstance(op, T.CAReduce)
            # -- the leading broadcastable dimension has been dropped
            #   by the local_reduce_broadcastable optimization
            #   now summation is over the original x's dimension 1.
            assert node.inputs[0].ndim == 2, node
            assert op.axis == (0,), op.axis
test_opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_local_log_sum_exp1():
    # Tests if optimization is applied by checking the presence of the maximum
    x = tensor3('x')
    check_max_log_sum_exp(x, axis=(0,), dimshuffle_op=None)
    check_max_log_sum_exp(x, axis=(1,), dimshuffle_op=None)
    check_max_log_sum_exp(x, axis=(2,), dimshuffle_op=None)
    check_max_log_sum_exp(x, axis=(0, 1), dimshuffle_op=None)
    check_max_log_sum_exp(x, axis=(0, 1, 2), dimshuffle_op=None)

    # If a transpose is applied to the sum
    transpose_op = DimShuffle((False, False), (1, 0))
    check_max_log_sum_exp(x, axis=2, dimshuffle_op=transpose_op)

    # If the sum is performed with keepdims=True
    x = TensorType(dtype='floatX', broadcastable=(False, True, False))('x')
    sum_keepdims_op = x.sum(axis=(0, 1), keepdims=True).owner.op
    check_max_log_sum_exp(x, axis=(0, 1), dimshuffle_op=sum_keepdims_op)
test_subtensor.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_inc_adv_subtensor_w_2vec(self):
        if inplace_increment is None:
            raise inplace_increment_missing

        subt = self.m[self.ix1, self.ix12]
        a = inc_subtensor(subt, subt)

        typ = tensor.TensorType(self.m.type.dtype, self.ix2.type.broadcastable)
        assert a.type == typ, (a.type, typ)
        f = theano.function([self.m, self.ix1, self.ix12], a,
                            allow_input_downcast=True)
        aval = f([[.4, .9, .1],
                  [5, 6, 7],
                  [.5, .3, .15]],
                 [1, 2, 1],
                 [0, 1, 0])
        assert numpy.allclose(aval,
                [[.4, .9, .1],
                  [5 * 3, 6, 7],
                  [.5, .3 * 2, .15]]), aval
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_tensor_values_eq_approx():
    # test, inf, -inf and nan equal themself
    a = numpy.asarray([-numpy.inf, -1, 0, 1, numpy.inf, numpy.nan])
    assert TensorType.values_eq_approx(a, a)

    # test inf, -inf don't equal themself
    b = numpy.asarray([numpy.inf, -1, 0, 1, numpy.inf, numpy.nan])
    assert not TensorType.values_eq_approx(a, b)
    b = numpy.asarray([-numpy.inf, -1, 0, 1, -numpy.inf, numpy.nan])
    assert not TensorType.values_eq_approx(a, b)

    # test allow_remove_inf
    b = numpy.asarray([numpy.inf, -1, 0, 1, 5, numpy.nan])
    assert TensorType.values_eq_approx(a, b, allow_remove_inf=True)
    b = numpy.asarray([numpy.inf, -1, 0, 1, 5, 6])
    assert not TensorType.values_eq_approx(a, b, allow_remove_inf=True)

    # test allow_remove_nan
    b = numpy.asarray([numpy.inf, -1, 0, 1, 5, numpy.nan])
    assert not TensorType.values_eq_approx(a, b, allow_remove_nan=False)
    b = numpy.asarray([-numpy.inf, -1, 0, 1, numpy.inf, 6])
    assert not TensorType.values_eq_approx(a, b, allow_remove_nan=False)
test_basic.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def test_flatten_broadcastable():
    # Ensure that the broadcastable pattern of the output is coherent with
    # that of the input

    inp = TensorType('float64', (False, False, False, False))()
    out = flatten(inp, outdim=2)
    assert out.broadcastable == (False, False)

    inp = TensorType('float64', (False, False, False, True))()
    out = flatten(inp, outdim=2)
    assert out.broadcastable == (False, False)

    inp = TensorType('float64', (False, True, False, True))()
    out = flatten(inp, outdim=2)
    assert out.broadcastable == (False, False)

    inp = TensorType('float64', (False, True, True, True))()
    out = flatten(inp, outdim=2)
    assert out.broadcastable == (False, True)

    inp = TensorType('float64', (True, False, True, True))()
    out = flatten(inp, outdim=3)
    assert out.broadcastable == (True, False, True)
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def local_abstractconv_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv2d):
        return None
    img, kern = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(kern.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1]
    rval = CorrMM(border_mode=node.op.border_mode,
                  subsample=node.op.subsample,
                  filter_dilation=node.op.filter_dilation)(img, kern)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def local_abstractconv3d_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv3d):
        return None
    img, kern = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(kern.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1, ::-1]
    rval = Corr3dMM(border_mode=node.op.border_mode,
                    subsample=node.op.subsample,
                    filter_dilation=node.op.filter_dilation)(img, kern)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def local_abstractconv3d_gradweight_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv3d_gradWeights):
        return None
    img, topgrad, shape = node.inputs
    if not isinstance(img.type, TensorType) or \
       not isinstance(topgrad.type, TensorType):
        return None

    rval = Corr3dMM_gradWeights(border_mode=node.op.border_mode,
                                subsample=node.op.subsample,
                                filter_dilation=node.op.filter_dilation)(img, topgrad, shape)
    copy_stack_trace(node.outputs[0], rval)

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        rval = rval[:, :, ::-1, ::-1, ::-1]
    rval = theano.tensor.patternbroadcast(rval, node.outputs[0].broadcastable)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def local_abstractconv_gradinputs_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv2d_gradInputs):
        return None
    kern, topgrad, shape = node.inputs
    if not isinstance(kern.type, TensorType) or \
       not isinstance(topgrad.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1]
    rval = CorrMM_gradInputs(border_mode=node.op.border_mode,
                             subsample=node.op.subsample,
                             filter_dilation=node.op.filter_dilation)(kern, topgrad,
                                                                      shape)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def local_abstractconv3d_gradinputs_gemm(node):
    if theano.config.cxx == "" or not theano.config.blas.ldflags:
        return
    if not isinstance(node.op, AbstractConv3d_gradInputs):
        return None
    kern, topgrad, shape = node.inputs
    if not isinstance(kern.type, TensorType) or \
       not isinstance(topgrad.type, TensorType):
        return None

    # need to flip the kernel if necessary
    if node.op.filter_flip:
        kern = kern[:, :, ::-1, ::-1, ::-1]
    rval = Corr3dMM_gradInputs(border_mode=node.op.border_mode,
                               subsample=node.op.subsample,
                               filter_dilation=node.op.filter_dilation)(kern, topgrad,
                                                                        shape)
    copy_stack_trace(node.outputs[0], rval)

    return [rval]
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def local_conv2d_cpu(node):

    if not isinstance(node.op, AbstractConv2d):
        return None

    img, kern = node.inputs
    if ((not isinstance(img.type, TensorType) or
         not isinstance(kern.type, TensorType))):
        return None
    if node.op.border_mode not in ['full', 'valid']:
        return None
    if not node.op.filter_flip:
        # Not tested yet
        return None

    rval = conv2d(img, kern,
                  node.op.imshp, node.op.kshp,
                  border_mode=node.op.border_mode,
                  subsample=node.op.subsample)

    copy_stack_trace(node.outputs[0], rval)
    return [rval]
corr3d.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def make_node(self, img, topgrad, shape=None):
        img = as_tensor_variable(img)
        topgrad = as_tensor_variable(topgrad)
        img, topgrad = self.as_common_dtype(img, topgrad)
        if img.type.ndim != 5:
            raise TypeError('img must be 5D tensor')
        if topgrad.type.ndim != 5:
            raise TypeError('topgrad must be 5D tensor')
        if self.subsample != (1, 1, 1) or self.border_mode == "half":
            if shape is None:
                raise ValueError('shape must be given if subsample != (1, 1, 1)'
                                 ' or border_mode == "half"')
            height_width_depth = [as_tensor_variable(shape[0]).astype('int64'),
                                  as_tensor_variable(shape[1]).astype('int64'),
                                  as_tensor_variable(shape[2]).astype('int64')]
        else:
            height_width_depth = []

        broadcastable = [topgrad.type.broadcastable[1], img.type.broadcastable[1],
                         False, False, False]
        dtype = img.type.dtype
        return Apply(self, [img, topgrad] + height_width_depth,
                     [TensorType(dtype, broadcastable)()])
corr3d.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 65 收藏 0 点赞 0 评论 0
def make_node(self, kern, topgrad, shape=None):
        kern = as_tensor_variable(kern)
        topgrad = as_tensor_variable(topgrad)
        kern, topgrad = self.as_common_dtype(kern, topgrad)
        if kern.type.ndim != 5:
            raise TypeError('kern must be 5D tensor')
        if topgrad.type.ndim != 5:
            raise TypeError('topgrad must be 5D tensor')
        if self.subsample != (1, 1, 1) and shape is None:
            raise ValueError('shape must be given if subsample != (1, 1, 1)')
        if self.subsample != (1, 1, 1):
            height_width_depth = [as_tensor_variable(shape[0]).astype('int64'),
                                  as_tensor_variable(shape[1]).astype('int64'),
                                  as_tensor_variable(shape[2]).astype('int64')]
        else:
            height_width_depth = []

        broadcastable = [topgrad.type.broadcastable[0], kern.type.broadcastable[1],
                         False, False, False]
        dtype = kern.type.dtype
        return Apply(self, [kern, topgrad] + height_width_depth,
                     [TensorType(dtype, broadcastable)()])
corr.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def make_node(self, kern, topgrad, shape=None):
        kern = as_tensor_variable(kern)
        topgrad = as_tensor_variable(topgrad)
        kern, topgrad = self.as_common_dtype(kern, topgrad)
        if kern.type.ndim != 4:
            raise TypeError('kern must be 4D tensor')
        if topgrad.type.ndim != 4:
            raise TypeError('topgrad must be 4D tensor')
        if self.subsample != (1, 1) and shape is None:
            raise ValueError('shape must be given if subsample != (1, 1)')
        height_width = [as_tensor_variable(shape[0]).astype('int64'), as_tensor_variable(shape[1]).astype('int64')] if self.subsample != (1, 1) else []

        broadcastable = [topgrad.type.broadcastable[0], kern.type.broadcastable[1],
                         False, False]
        dtype = kern.type.dtype
        return Apply(self, [kern, topgrad] + height_width,
                     [TensorType(dtype, broadcastable)()])
raw_random.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def uniform(random_state, size=None, low=0.0, high=1.0, ndim=None, dtype=None):
    """
    Sample from a uniform distribution between low and high.

    If the size argument is ambiguous on the number of dimensions, ndim
    may be a plain integer to supplement the missing information.

    If size is None, the output shape will be determined by the shapes
    of low and high.

    If dtype is not specified, it will be inferred from the dtype of
    low and high, but will be at least as precise as floatX.

    """
    low = tensor.as_tensor_variable(low)
    high = tensor.as_tensor_variable(high)
    if dtype is None:
        dtype = tensor.scal.upcast(theano.config.floatX, low.dtype, high.dtype)
    ndim, size, bcast = _infer_ndim_bcast(ndim, size, low, high)
    op = RandomFunction('uniform',
                        tensor.TensorType(dtype=dtype, broadcastable=bcast))
    return op(random_state, size, low, high)
raw_random.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def normal(random_state, size=None, avg=0.0, std=1.0, ndim=None, dtype=None):
    """
    Sample from a normal distribution centered on avg with
    the specified standard deviation (std).

    If the size argument is ambiguous on the number of dimensions, ndim
    may be a plain integer to supplement the missing information.

    If size is None, the output shape will be determined by the shapes
    of avg and std.

    If dtype is not specified, it will be inferred from the dtype of
    avg and std, but will be at least as precise as floatX.

    """
    avg = tensor.as_tensor_variable(avg)
    std = tensor.as_tensor_variable(std)
    if dtype is None:
        dtype = tensor.scal.upcast(theano.config.floatX, avg.dtype, std.dtype)
    ndim, size, bcast = _infer_ndim_bcast(ndim, size, avg, std)
    op = RandomFunction('normal',
                        tensor.TensorType(dtype=dtype, broadcastable=bcast))
    return op(random_state, size, avg, std)
raw_random.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def random_integers(random_state, size=None, low=0, high=1, ndim=None,
                    dtype='int64'):
    """
    Sample a random integer between low and high, both inclusive.

    If the size argument is ambiguous on the number of dimensions, ndim
    may be a plain integer to supplement the missing information.

    If size is None, the output shape will be determined by the shapes
    of low and high.

    """
    low = tensor.as_tensor_variable(low)
    high = tensor.as_tensor_variable(high)
    ndim, size, bcast = _infer_ndim_bcast(ndim, size, low, high)
    op = RandomFunction(random_integers_helper,
                        tensor.TensorType(dtype=dtype, broadcastable=bcast))
    return op(random_state, size, low, high)
test_shared.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_ctors(self):

        if theano.configdefaults.python_int_bitwidth() == 32:
            assert shared(7).type == theano.tensor.iscalar, shared(7).type
        else:
            assert shared(7).type == theano.tensor.lscalar, shared(7).type
        assert shared(7.0).type == theano.tensor.dscalar
        assert shared(numpy.float32(7)).type == theano.tensor.fscalar

        # test tensor constructor
        b = shared(numpy.zeros((5, 5), dtype='int32'))
        assert b.type == TensorType('int32', broadcastable=[False, False])
        b = shared(numpy.random.rand(4, 5))
        assert b.type == TensorType('float64', broadcastable=[False, False])
        b = shared(numpy.random.rand(5, 1, 2))
        assert b.type == TensorType('float64', broadcastable=[False, False, False])

        assert shared([]).type == generic

        def badfunc():
            shared(7, bad_kw=False)
        self.assertRaises(TypeError, badfunc)


问题


面经


文章

微信
公众号

扫码关注公众号