def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
python类clip()的实例源码
dsb_a_eliasq14_mal2_s5_p8a1_all.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx27_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx28_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx24_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx36_relias18_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx35_relias18_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasq5_mal2_s5_p8a1_spl.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx38_relias18_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
predictions = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.cast(T.flatten(nn.layers.get_output(model.l_target)), 'int32')
p = predictions[T.arange(predictions.shape[0]), targets]
p = T.clip(p, epsilon, 1.)
loss = T.mean(T.log(p))
return -loss
dsb_a_eliasq4_mal2_s5_p8a1_spl.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasx32_relias10_s5_p8a1.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
dsb_a_eliasq15_mal7_s5_p8a1_all.py 文件源码
项目:dsb3
作者: EliasVansteenkiste
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)
def build_objective(model, deterministic=False, epsilon=1e-12):
p = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
p = T.clip(p, epsilon, 1.-epsilon)
bce = T.nnet.binary_crossentropy(p, targets)
return T.mean(bce)