python类matrix()的实例源码

NeuralNet.py 文件源码 项目:epsilon_free_inference 作者: gpapamak 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, n_inputs):
        """Constructs a net with a given number of inputs and no layers."""

        assert isposint(n_inputs), 'Number of inputs must be a positive integer.'

        self.n_inputs = n_inputs
        self.n_outputs = n_inputs
        self.n_units = [n_inputs]
        self.n_layers = 0
        self.n_params = 0

        self.Ws = []
        self.bs = []
        self.hs = [tt.matrix('x')]
        self.parms = self.Ws + self.bs
        self.input = self.hs[0]
        self.output = self.hs[-1]

        self.eval_f = None
LossFunction.py 文件源码 项目:epsilon_free_inference 作者: gpapamak 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def squareError(x):
    """Square error loss function."""

    if x.ndim == 1:
        y = tt.vector('y')
        L = tt.mean((x - y) ** 2)

    elif x.ndim == 2:
        y = tt.matrix('y')
        L = tt.mean(tt.sum((x - y) ** 2, axis=1))

    else:
        raise ValueError('x must be either a vector or a matrix.')

    L.name = 'loss'

    return y, L
LossFunction.py 文件源码 项目:epsilon_free_inference 作者: gpapamak 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def crossEntropy(x):
    """Cross entropy loss function. Only works for networks with one output."""

    if x.ndim == 1:
        pass

    elif x.ndim == 2:
        x = x[:, 0]

    else:
        raise ValueError('x must be either a vector or a matrix.')

    y = tt.vector('y')
    L = -tt.mean(y * tt.log(x) + (1-y) * tt.log(1-x))
    L.name = 'loss'

    return y, L
rn_rnn_model.py 文件源码 项目:rngru 作者: rneilson 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def savetofile(self, outfile):
        """Save model parameters to file."""

        # Pickle non-matrix params into bytestring, then convert to numpy byte array
        pklbytes = pickle.dumps({'hyper': self.hyper, 'epoch': self.epoch, 'pos': self.pos}, 
            protocol=pickle.HIGHEST_PROTOCOL)
        p = np.fromstring(pklbytes, dtype=np.uint8)

        # Gather parameter matrices and names
        pvalues = { n:m.get_value() for n, m in self.params.items() }

        # Now save params and matrices to file
        try:
            np.savez_compressed(outfile, p=p, **pvalues)
        except OSError as e:
            raise e
        else:
            if isinstance(outfile, str):
                stdout.write("Saved model parameters to {0}\n".format(outfile))
logistic_sgd.py 文件源码 项目:deeplearning 作者: wangzhics 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def load_data(dataset):
    print('... loading data')
    # Load the dataset
    with gzip.open(dataset, 'rb') as f:
        try:
            train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
        except:
            train_set, valid_set, test_set = pickle.load(f)
    # train_set, valid_set, test_set format: tuple(input, target)
    # input is a numpy.ndarray of 2 dimensions (a matrix)
    # where each row corresponds to an example. target is a
    # numpy.ndarray of 1 dimension (vector) that has the same length as
    # the number of rows in the input. It should give the target
    # to the example with the same index in the input.
    test_set_x, test_set_y = shared_dataset(test_set)
    valid_set_x, valid_set_y = shared_dataset(valid_set)
    train_set_x, train_set_y = shared_dataset(train_set)
    rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y),
            (test_set_x, test_set_y)]
    return rval
models.py 文件源码 项目:EUNN-theano 作者: iguanaus 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def times_diag(input, n_hidden, diag, swap_re_im):
    # input is a Ix2n_hidden matrix, where I is number
    # of training examples
    # diag is a n_hidden-dimensional real vector, which creates
    # the 2n_hidden x 2n_hidden complex diagonal matrix using 
    # e.^{j.*diag}=cos(diag)+j.*sin(diag)
    d = T.concatenate([diag, -diag]) #d is 2n_hidden

    Re = T.cos(d).dimshuffle('x',0)
    Im = T.sin(d).dimshuffle('x',0)

    input_times_Re = input * Re
    input_times_Im = input * Im

    output = input_times_Re + input_times_Im[:, swap_re_im]

    return output
models.py 文件源码 项目:EUNN-theano 作者: iguanaus 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def times_unitary(x,n,swap_re_im,Wparams,Wimpl):
    # multiply tensor x on the right  by the unitary matrix W parameterized by Wparams
    if (Wimpl == 'adhoc'):
        theta=Wparams[0]
        reflection=Wparams[1]
        index_permute_long=Wparams[2]
        step1 = times_diag(x, n, theta[0,:], swap_re_im)
        step2 = do_fft(step1, n)
        step3 = times_reflection(step2, n, reflection[0,:])
        step4 = vec_permutation(step3, index_permute_long)
        step5 = times_diag(step4, n, theta[1,:], swap_re_im)
        step6 = do_ifft(step5, n)
        step7 = times_reflection(step6, n, reflection[1,:])
        step8 = times_diag(step7, n, theta[2,:], swap_re_im)     
        y = step8
    elif (Wimpl == 'full'):
        Waug=Wparams[0]
        y = T.dot(x,Waug)
    return y
conv_net_sentence.py 文件源码 项目:CNN-for-Chinese-spam-SMS 作者: idiomer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def make_idx_data_cv(revs, word_idx_map, cv, max_l=51, k=100, filter_h=5):
    """
    Transforms sentences into a 2-d matrix.
    """
    train, test = [], []
    for rev in revs:
        sent = get_idx_from_sent(rev["text"], word_idx_map, max_l, k, filter_h)   
        sent.append(rev["y"])
        if rev["split"]==cv:            
            test.append(sent)        
        else:  
            train.append(sent)   
    train = np.array(train,dtype="int")
    train = np.random.permutation(train)[:10000]
    test = np.array(test,dtype="int")
    test = np.random.permutation(test)[:10000]
    return [train, test]
skipthoughts.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def word_features(table):
    """
    Extract word features into a normalized matrix
    """
    features = numpy.zeros((len(table), 620), dtype='float32')
    keys = table.keys()
    for i in range(len(table)):
        f = table[keys[i]]
        features[i] = f / norm(f)
    return features
skipthoughts.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_encoder(tparams, options):
    """
    build an encoder, given pre-computed word embeddings
    """
    # word embedding (source)
    embedding = tensor.tensor3('embedding', dtype='float32')
    x_mask = tensor.matrix('x_mask', dtype='float32')

    # encoder
    proj = get_layer(options['encoder'])[1](tparams, embedding, options,
                                            prefix='encoder',
                                            mask=x_mask)
    ctx = proj[0][-1]

    return embedding, x_mask, ctx
skipthoughts.py 文件源码 项目:how_to_convert_text_to_images 作者: llSourcell 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def word_features(table):
    """
    Extract word features into a normalized matrix
    """
    features = numpy.zeros((len(table), 620), dtype='float32')
    keys = table.keys()
    for i in range(len(table)):
        f = table[keys[i]]
        features[i] = f / norm(f)
    return features
skipthoughts.py 文件源码 项目:how_to_convert_text_to_images 作者: llSourcell 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_encoder(tparams, options):
    """
    build an encoder, given pre-computed word embeddings
    """
    # word embedding (source)
    embedding = tensor.tensor3('embedding', dtype='float32')
    x_mask = tensor.matrix('x_mask', dtype='float32')

    # encoder
    proj = get_layer(options['encoder'])[1](tparams, embedding, options,
                                            prefix='encoder',
                                            mask=x_mask)
    ctx = proj[0][-1]

    return embedding, x_mask, ctx
theano_utils.py 文件源码 项目:CopyNet 作者: MultiPath 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def ndim_tensor(ndim):
    if ndim == 1:
        return T.vector()
    elif ndim == 2:
        return T.matrix()
    elif ndim == 3:
        return T.tensor3()
    elif ndim == 4:
        return T.tensor4()
    return T.matrix()


# get int32 tensor
ss.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def init_func(self, img_value, scene_value):
        if self._init_func is None:
            img = T.matrix()
            init_state = self.proj_mlp.compute(img)
            self._init_func = theano.function([img], init_state)
        self._scene_shared.set_value(scene_value)
        return self._init_func(img_value)
ss.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def step_func(self, state_value, w_value):
        if self._step_func is None:
            w = T.ivector()
            state = T.matrix()
            new_state, p = self.compute(state, w, self._scene_shared)
            self._step_func = theano.function([state, w], [new_state, T.log(p)])
        return self._step_func(state_value, w_value)
scene_mlp.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, name='scene_mlp', layer_sizes=(2048, 1024, 1024, 80), model_file=None):
        self.name = name
        if model_file is not None:
            with h5py.File(model_file, 'r') as f:
                layer_sizes = f.attrs['layer_sizes']
        self.config = {'layer_sizes': layer_sizes}

        # define inputs
        x = T.matrix('x')
        y = T.matrix('y')
        self.inputs = [x, y]

        # define computation graph
        self.mlp = MLP(layer_sizes=layer_sizes, name='mlp', output_type='softmax')
        self.proba = self.mlp.compute(x)
        self.log_proba = T.log(self.proba)

        # define costs
        def kl_divergence(p, q):
            kl = T.mean(T.sum(p * T.log((p+1e-30)/(q+1e-30)), axis=1))
            kl += T.mean(T.sum(q * T.log((q+1e-30)/(p+1e-30)), axis=1))
            return kl
        kl = kl_divergence(self.proba, y)
        acc = T.mean(T.eq(self.proba.argmax(axis=1), y.argmax(axis=1)))
        self.costs = [kl, acc]

        # layers and parameters
        self.layers = [self.mlp]
        self.params = sum([l.params for l in self.layers], [])

        # load weights from file, if model_file is not None
        if model_file is not None:
            self.load_weights(model_file)
gnic.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def step_func(self, state_value, w_value):
        if self._step_func is None:
            w = T.ivector()
            state = T.matrix()
            new_state, p = self.compute(state, w)
            self._step_func = theano.function([state, w], [new_state, T.log(p)])
        return self._step_func(state_value, w_value)
rass.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def step_func(self, state_value, w_value):
        if self._step_func is None:
            w = T.ivector()
            state = T.matrix()
            new_state, p, _ = self.compute(state, w, self._feat_shared, self._scene_shared)
            self._step_func = theano.function([state, w], [new_state, T.log(p)])
        return self._step_func(state_value, w_value)
ra.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def step_func(self, state_value, w_value):
        if self._step_func is None:
            w = T.ivector()
            state = T.matrix()
            new_state, p, _ = self.compute(state, w, self._feat_shared)
            self._step_func = theano.function([state, w], [new_state, T.log(p)])
        return self._step_func(state_value, w_value)
tools.py 文件源码 项目:structured-output-ae 作者: sbelharbi 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def sharedX_mtx(mtx, name=None, borrow=None, dtype=None):
    """Share a matrix value with type theano.confgig.floatX.
    Parameters:
        value: matrix array
        name: variable name (str)
        borrow: boolean
        dtype: the type of the value when shared. default: theano.config.floatX
    """
    if dtype is None:
        dtype = theano.config.floatX
    return theano.shared(
        np.array(mtx, dtype=dtype), name=name, borrow=borrow)


问题


面经


文章

微信
公众号

扫码关注公众号