python类conv2d()的实例源码

model.py 文件源码 项目:deeplearning 作者: wangzhics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, rng, input, input_shape, filter_shape, pool_shape=(2, 2)):
        """
        ???????????????????????
        :param input: ?????
        :param input_shape: ????????(batch_size, image_channel, image_weight, image_height)
        :param filter_shape: ???????(filter_count, filter_channel, filter_weight, filter_height)
        :param pool_shape: ??????
        :return:
        """
        #
        assert input_shape[1] == filter_shape[1]
        self.input = input
        self.input_shape = input_shape
        self.filter_shape = filter_shape
        self.pool_shape = pool_shape
        # ?????????
        n_in = numpy.prod(input_shape[1:])
        n_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) // numpy.prod(pool_shape))
        weight_max = numpy.sqrt(6. / (n_in + n_out))
        self.w = theano.shared(
            numpy.asarray(
                rng.uniform(low=-weight_max, high=weight_max, size=filter_shape),
                dtype=theano.config.floatX
            ),
            borrow=True
        )
        self.b = theano.shared(numpy.zeros((filter_shape[0],), dtype=theano.config.floatX), borrow=True)
        self.params = [self.w, self.b]
        # calculate the output
        self.conv_out = conv2d(
            input=self.input,
            filters=self.w,
            filter_shape=self.filter_shape,
            image_shape=self.input_shape
        )
        self.pool_out = pool_2d(
            input=self.conv_out,
            ds=pool_shape,
            ignore_border=True
        )
        self.output = T.tanh(self.pool_out + self.b.dimshuffle('x', 0, 'x', 'x'))
2d_convolutional_net.py 文件源码 项目:GT-Deep-Learning-for-Sign-Language-Recognition 作者: payamsiyari 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def model(X, w, w2, w3, w35, w4, p_drop_conv, p_drop_hidden):
    l1a = rectify(conv2d(X, w, border_mode='full'))
    #print "l1a",l1a.type
    #print "l1a",l1a.shape.eval()
    l1 = max_pool_2d(l1a, (2, 2))
    #print "l1",l1.get_value().shape
    #l1 = dropout(l1, p_drop_conv)

    l2a = rectify(conv2d(l1, w2))
    #print "l2a",l2a.get_value().shape
    l2 = max_pool_2d(l2a, (2, 2))
    #print "l2",l2.get_value().shape
    #l2 = dropout(l2, p_drop_conv)

    l3 = rectify(conv2d(l2, w3))
    #print "l3",l3.get_value().shape
    #l3 = max_pool_2d(l3a, (1, 1))
    #l3 = dropout(l3, p_drop_conv)

    l35a = rectify(conv2d(l3, w35))
    #print "l35a",l35a.get_value().shape
    l35b = max_pool_2d(l35a, (2, 2))
    #print "l35b",l35b.get_value().shape
    l35 = T.flatten(l35b, outdim=2)
    #print "l35",l35.get_value().shape
    #l35 = dropout(l35, p_drop_conv)

    l4 = rectify(T.dot(l35, w4))
    #print "l4",l4.get_value().shape
    #l4 = dropout(l4, p_drop_hidden)

    pyx = softmax(T.dot(l4, w_o))
    return l1, l2, l3, l35, l4, pyx
layers.py 文件源码 项目:DL-Benchmarks 作者: DL-Benchmarks 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2),
                 stride=(1, 1)):
        """
        Allocate a LeNetConvPoolLayer with shared variable internal parameters.
        """

        assert image_shape[1] == filter_shape[1]
        self.input = input
        fan_in = np.prod(filter_shape[1:])
        fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) /
                   np.prod(poolsize))
        W_bound = np.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(
            np.asarray(
                rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                dtype=theano.config.floatX
            ),
            borrow=True
        )

        b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape,
            subsample=stride
        )

        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
layers.py 文件源码 项目:DeepRepICCV2015 作者: tomrunia 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):

        assert image_shape[1] == filter_shape[1]
        self.input = input

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
                   numpy.prod(poolsize))
        # initialize weights with random weights
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(numpy.asarray(
            rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
            dtype=theano.config.floatX),
                               borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(input=input, filters=self.W,
                filter_shape=filter_shape, image_shape=image_shape)

        # downsample each feature map individually, using maxpooling
        pooled_out = pool.pool_2d(input=conv_out, ds=poolsize, ignore_border=True)

        self.output = T.maximum(0.0, pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        # store parameters of this layer
        self.params = [self.W, self.b]
layers.py 文件源码 项目:DeepRepICCV2015 作者: tomrunia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):

        assert image_shape[1] == filter_shape[1]
        self.input = input

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
                   numpy.prod(poolsize))
        # initialize weights with random weights
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(numpy.asarray(
            rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
            dtype=theano.config.floatX),
                               borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(input=input, filters=self.W,
                filter_shape=filter_shape, image_shape=image_shape)

        # downsample each feature map individually, using maxpooling
        pooled_out = pool.pool_2d(input=conv_out, ds=poolsize, ignore_border=True)

        self.output = T.maximum(0.0, pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        # store parameters of this layer
        self.params = [self.W, self.b]
layers.py 文件源码 项目:DeepRepICCV2015 作者: tomrunia 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):

        assert image_shape[1] == filter_shape[1]
        self.input = input

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
                   numpy.prod(poolsize))
        # initialize weights with random weights
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(numpy.asarray(
            rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
            dtype=theano.config.floatX),
                               borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(input=input, filters=self.W,
                filter_shape=filter_shape, image_shape=image_shape)

        # downsample each feature map individually, using maxpooling
        pooled_out = downsample.max_pool_2d(input=conv_out,
                                            ds=poolsize, ignore_border=True)

        self.output = T.maximum(0.0, pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        # store parameters of this layer
        self.params = [self.W, self.b]
jeeModels.py 文件源码 项目:jointEE-NN 作者: anoperson 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def convolutionalLayer(inpu, feature_map, batch, length, window, dim, prefix, params, names):
    down = window / 2
    up = window - down - 1
    zodown = T.zeros((batch, 1, down, dim), dtype=theano.config.floatX)
    zoup = T.zeros((batch, 1, up, dim), dtype=theano.config.floatX)

    inps = T.cast(T.concatenate([zoup, inpu, zodown], axis=2), dtype=theano.config.floatX)

    fan_in = window * dim
    fan_out = feature_map * window * dim / length #(length - window + 1)

    filter_shape = (feature_map, 1, window, dim)
    image_shape = (batch, 1, length + down + up, dim)

    #if non_linear=="none" or non_linear=="relu":
    #    conv_W = theano.shared(0.2 * numpy.random.uniform(low=-1.0,high=1.0,\
    #                            size=filter_shape).astype(theano.config.floatX))

    #else:
    #    W_bound = numpy.sqrt(6. / (fan_in + fan_out))
    #    conv_W = theano.shared(numpy.random.uniform(low=-W_bound,high=W_bound,\
    #                            size=filter_shape).astype(theano.config.floatX))

    W_bound = numpy.sqrt(6. / (fan_in + fan_out))
    conv_W = theano.shared(numpy.random.uniform(low=-W_bound,high=W_bound,\
                            size=filter_shape).astype(theano.config.floatX))

    conv_b = theano.shared(numpy.zeros(filter_shape[0], dtype=theano.config.floatX))

    # bundle
    params += [ conv_W, conv_b ]
    names += [ prefix + '_convL_W_' + str(window), prefix + '_convL_b_' + str(window) ]

    conv_out = conv.conv2d(input=inps, filters=conv_W, filter_shape=filter_shape, image_shape=image_shape)

    conv_out = T.tanh(conv_out + conv_b.dimshuffle('x', 0, 'x', 'x'))

    return conv_out.dimshuffle(0,2,1,3).flatten(3)
jeeModels.py 文件源码 项目:jointEE-NN 作者: anoperson 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def LeNetConvPoolLayer(inps, feature_map, batch, length, window, dim, prefix, params, names):
    fan_in = window * dim
    fan_out = feature_map * window * dim / (length - window + 1)

    filter_shape = (feature_map, 1, window, dim)
    image_shape = (batch, 1, length, dim)
    pool_size = (length - window + 1, 1)

    #if non_linear=="none" or non_linear=="relu":
    #    conv_W = theano.shared(0.2 * numpy.random.uniform(low=-1.0,high=1.0,\
    #                            size=filter_shape).astype(theano.config.floatX))

    #else:
    #    W_bound = numpy.sqrt(6. / (fan_in + fan_out))
    #    conv_W = theano.shared(numpy.random.uniform(low=-W_bound,high=W_bound,\
    #                            size=filter_shape).astype(theano.config.floatX))

    W_bound = numpy.sqrt(6. / (fan_in + fan_out))
    conv_W = theano.shared(numpy.random.uniform(low=-W_bound,high=W_bound,\
                            size=filter_shape).astype(theano.config.floatX))

    conv_b = theano.shared(numpy.zeros(filter_shape[0], dtype=theano.config.floatX))

    # bundle
    params += [ conv_W, conv_b ]
    names += [ prefix + '_conv_W_' + str(window), prefix + '_conv_b_' + str(window) ]

    conv_out = conv.conv2d(input=inps, filters=conv_W, filter_shape=filter_shape, image_shape=image_shape)


    conv_out_act = T.tanh(conv_out + conv_b.dimshuffle('x', 0, 'x', 'x'))
    conv_output = downsample.max_pool_2d(input=conv_out_act, ds=pool_size, ignore_border=True)

    return conv_output.flatten(2)
conv1d.py 文件源码 项目:DBQA-KBQA 作者: Lucien-qiang 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def convolve1d_4D_conv2d(input, W, mode='full'):
  conv_out, _ = theano.scan(fn=lambda i: conv2d(input[:,:,:,i:i+1], W[:,:,:,i:i+1], border_mode=mode),
                                outputs_info=None,
                                sequences=[T.arange(0, W.shape[3])])
  conv_out = conv_out.flatten(ndim=4).dimshuffle(1,2,3,0)
  return conv_out
conv1d.py 文件源码 项目:DBQA-KBQA 作者: Lucien-qiang 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def convolve1d_4D_conv2d_image(input, W, mode='full'):
  return conv2d(input, W, border_mode='valid')
nn_layers.py 文件源码 项目:DBQA-KBQA 作者: Lucien-qiang 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def output_func(self, input):
    return conv.conv2d(input, self.W, border_mode='valid',
                       filter_shape=self.filter_shape,
                       image_shape=self.input_shape)


# def Conv2dMaxPool(rng, filter_shape, activation):
#   conv = Conv2dLayer(rng, filter_shape)
#   nonlinearity = NonLinearityLayer(activation=activation)
#   pooling = MaxPoolLayer()
#   layer = FeedForwardNet(layers=[])
#   return layer
network3.py 文件源码 项目:neural-networks-and-deep-learning 作者: skylook 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape(self.image_shape)
        conv_out = conv.conv2d(
            input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
            image_shape=self.image_shape)
        pooled_out = downsample.max_pool_2d(
            input=conv_out, ds=self.poolsize, ignore_border=True)
        self.output = self.activation_fn(
            pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.output_dropout = self.output # no dropout in the convolutional layers
cnn_layers.py 文件源码 项目:sentence_classification 作者: zhegan27 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def encoder(tparams, layer0_input, filter_shape, pool_size,
                      prefix='cnn_encoder'):

    """ filter_shape: (number of filters, num input feature maps, filter height,
                        filter width)
        image_shape: (batch_size, num input feature maps, image height, image width)
    """

    conv_out = conv.conv2d(input=layer0_input, filters=tparams[_p(prefix,'W')], 
                            filter_shape=filter_shape)

    conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
    output = pool.pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=True)

    return output.flatten(2)
conv1d.py 文件源码 项目:DEEP-CLICK-MODEL 作者: THUIR 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def convolve1d_4D_conv2d(input, W, mode='full'):
  conv_out, _ = theano.scan(fn=lambda i: conv2d(input[:,:,:,i:i+1], W[:,:,:,i:i+1], border_mode=mode),
                                outputs_info=None,
                                sequences=[T.arange(0, W.shape[3])])
  conv_out = conv_out.flatten(ndim=4).dimshuffle(1,2,3,0)
  return conv_out
conv1d.py 文件源码 项目:DEEP-CLICK-MODEL 作者: THUIR 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def convolve1d_4D_conv2d_image(input, W, mode='full'):
  return conv2d(input, W, border_mode='valid')
nn_layers.py 文件源码 项目:DEEP-CLICK-MODEL 作者: THUIR 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def output_func(self, input):
        return conv.conv2d(input, self.W, border_mode='valid',
                           filter_shape=self.filter_shape,
                           image_shape=self.input_shape)


# def Conv2dMaxPool(rng, filter_shape, activation):
# conv = Conv2dLayer(rng, filter_shape)
#   nonlinearity = NonLinearityLayer(activation=activation)
#   pooling = MaxPoolLayer()
#   layer = FeedForwardNet(layers=[])
#   return layer
Conv2DLayer.py 文件源码 项目:deep-motion-analysis 作者: Brimborough 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, input):

        s, f = self.input_shape, self.filter_shape
        hzeros = T.basic.zeros((s[0], s[1], (f[2]-1)//2, s[3]), dtype=theano.config.floatX)
        vzeros = T.basic.zeros((s[0], s[1], s[2] + (f[2]-1), (f[3]-1)//2), dtype=theano.config.floatX)
        input = T.concatenate([hzeros, input, hzeros], axis=2)
        input = T.concatenate([vzeros, input, vzeros], axis=3)
        input = conv.conv2d(
            input=input,
            filters=self.W,
            border_mode='valid')

        return input + self.b.dimshuffle('x', 0, 'x', 'x')
Conv2DLayer.py 文件源码 项目:deep-motion-analysis 作者: Brimborough 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def inv(self, output):

        output = output - self.b.dimshuffle('x', 0, 'x', 'x')

        s, f = self.output_shape, self.filter_shape
        hzeros = T.basic.zeros((s[0], s[1], (f[2]-1)//2, s[3]), dtype=theano.config.floatX)
        vzeros = T.basic.zeros((s[0], s[1], s[2] + (f[2]-1), (f[3]-1)//2), dtype=theano.config.floatX)
        output = T.concatenate([hzeros, output, hzeros], axis=2)
        output = T.concatenate([vzeros, output, vzeros], axis=3)
        output = conv.conv2d(
            input=output.dimshuffle(0,1,2,3),
            filters=self.W.dimshuffle(1,0,2,3)[:,:,::-1,::-1],
            border_mode='valid')

        return output
Conv1DLayer.py 文件源码 项目:deep-motion-analysis 作者: Brimborough 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __call__(self, input):

        s, f = self.input_shape, self.filter_shape
        zeros = T.basic.zeros((s[0], s[1], (f[2]-1)//2), dtype=theano.config.floatX)
        input = T.concatenate([zeros, input, zeros], axis=2)
        input = conv.conv2d(
            input=input.dimshuffle(0,1,2,'x'),
            filters=self.W.dimshuffle(0,1,2,'x'),
            border_mode='valid')[:,:,:,0]

        return input + self.b.dimshuffle('x', 0, 'x')
Conv1DLayer.py 文件源码 项目:deep-motion-analysis 作者: Brimborough 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def inv(self, output):

        output = output - self.b.dimshuffle('x', 0, 'x')

        s, f = self.output_shape, self.filter_shape
        zeros = T.basic.zeros((s[0], s[1], (f[2]-1)//2), dtype=theano.config.floatX)
        output = T.concatenate([zeros, output, zeros], axis=2)
        output = conv.conv2d(
            input=output.dimshuffle(0,1,2,'x'),
            filters=self.W.dimshuffle(1,0,2,'x')[:,:,::-1],
            border_mode='valid')[:,:,:,0]

        return output


问题


面经


文章

微信
公众号

扫码关注公众号