python类conv2d()的实例源码

classes_for_model.py 文件源码 项目:MoodClassification 作者: disha-dp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:CNN-for-Chinese-spam-SMS 作者: idiomer 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
CNN_classes.py 文件源码 项目:Humour-Detection 作者: srishti-1795 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
useolivettifaces.py 文件源码 项目:DeepLearning 作者: Ahagpp 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self,  input,params_W,params_b, filter_shape, image_shape, poolsize=(2, 2)):
        assert image_shape[1] == filter_shape[1]
        self.input = input
        self.W = params_W
        self.b = params_b
        # ??
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape
        )
        # ???
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.params = [self.W, self.b]
use_CNN_olivettifaces.py 文件源码 项目:DeepLearning 作者: Ahagpp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self,  input,params_W,params_b, filter_shape, image_shape, poolsize=(2, 2)):
        assert image_shape[1] == filter_shape[1]
        self.input = input
        self.W = params_W
        self.b = params_b
        # ??
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape
        )
        # ???
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.params = [self.W, self.b]
T6SB_conv_net_classes.py 文件源码 项目:SE16-Task6-Stance-Detection 作者: nestle1993 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:SE16-Task6-Stance-Detection 作者: nestle1993 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
CNN.py 文件源码 项目:AttentionNet 作者: sayvazov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def eval(self, inp):
        #input = self.pad(inp.eval())
        results= theano.tensor.nnet.conv2d(input, self.W, border_mode='full' )
        biased = results + self.b.dimshuffle('x', 0, 'x', 'x')
        result = theano.tensor.nnet.sigmoid(biased)
        return result







#test = CNNlayer((1,1,4,4), (1,1,3,3))
#inp = np.array([[0.0,0,0,0],[0,1,0,0], [0,0,0,0], [0,0,0,0]])
#weight = np.array([[1,.2, 0],[.4,.5, 0], [0,0,0]])
#test.setW(weight)
#weight_2 = np.array([list(weight[i][::-1]) for i in range(len(weight))])
#weight_3 = weight_2[::-1]
#print(inp)
#print(( weight_3))
#print("their", conv.conv2d(inp, weight).eval())
cnn_layer.py 文件源码 项目:textGAN_public 作者: dreasysnail 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def encoder(tparams, layer0_input, filter_shape, pool_size, options, prefix='cnn_d'):

    """ filter_shape: (number of filters, num input feature maps, filter height,
                        filter width)
        image_shape: (batch_size, num input feature maps, image height, image width)
    """

    conv_out = conv.conv2d(input=layer0_input, filters=tparams[_p(prefix,'W')], filter_shape=filter_shape)
    # conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
    # output = downsample.max_pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=False)

    if options['cnn_activation'] == 'tanh':
        conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
        output = downsample.max_pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=False)  # the ignore border is very important
    elif options['cnn_activation'] == 'linear':
        conv_out2 = conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x')
        output = downsample.max_pool_2d(input=conv_out2, ds=pool_size, ignore_border=False)  # the ignore border is very important
    else:
        print(' Wrong specification of activation function in CNN')

    return output.flatten(2)

    #output.flatten(2)
test_conv.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_broadcast_grad():
    # rng = numpy.random.RandomState(utt.fetch_seed())
    x1 = T.tensor4('x')
    # x1_data = rng.randn(1, 1, 300, 300)
    sigma = T.scalar('sigma')
    # sigma_data = 20
    window_radius = 3

    filter_1d = T.arange(-window_radius, window_radius + 1)
    filter_1d = filter_1d.astype(theano.config.floatX)
    filter_1d = T.exp(-0.5 * filter_1d**2 / sigma ** 2)
    filter_1d = filter_1d / filter_1d.sum()

    filter_W = filter_1d.dimshuffle(['x', 'x', 0, 'x'])

    y = theano.tensor.nnet.conv2d(x1, filter_W, border_mode='full',
                                  filter_shape=[1, 1, None, None])
    theano.grad(y.sum(), sigma)
opt.py 文件源码 项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def local_conv2d_cpu(node):

    if not isinstance(node.op, AbstractConv2d):
        return None

    img, kern = node.inputs
    if ((not isinstance(img.type, TensorType) or
         not isinstance(kern.type, TensorType))):
        return None
    if node.op.border_mode not in ['full', 'valid']:
        return None
    if not node.op.filter_flip:
        # Not tested yet
        return None

    rval = conv2d(img, kern,
                  node.op.imshp, node.op.kshp,
                  border_mode=node.op.border_mode,
                  subsample=node.op.subsample)

    copy_stack_trace(node.outputs[0], rval)
    return [rval]
conv_net_classes.py 文件源码 项目:personality-detection 作者: SenticNet 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = None#(batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
CNN.py 文件源码 项目:KEHNN 作者: MarkWuNLP 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:coling2016-claim-classification 作者: UKPLab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:text_classification 作者: senochow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:text_classification 作者: senochow 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def predict_maxpool(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            return conv_out_tanh
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:text_classification 作者: senochow 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:text_classification 作者: senochow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
conv_net_classes.py 文件源码 项目:dcnn_mlee 作者: zjh-nudger 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
CNN.py 文件源码 项目:MultiTurnResponseSelection 作者: MarkWuNLP 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = theano.tensor.signal.pool.pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output =theano.tensor.signal.pool.pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = theano.tensor.signal.pool.pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
logicnn_classes.py 文件源码 项目:logicnn 作者: ZhitingHu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
CNN.py 文件源码 项目:TACNTN 作者: MarkWuNLP 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
tetris_theano.py 文件源码 项目:reinforcement_learning 作者: andreweskeclarke 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def output(self, x, a):
        x = T.reshape(x, (-1, self.n_inputs, self.height, self.width))
        return T.tanh(conv2d(x, self.W) + self.b.dimshuffle('x', 0, 'x', 'x'))
convnet.py 文件源码 项目:deep-learning-theano 作者: aidiary 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, rng, input, image_shape, filter_shape, poolsize=(2, 2)):
        # ???????????????????
        assert image_shape[1] == filter_shape[1]

        fan_in = np.prod(filter_shape[1:])
        fan_out = filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize)

        W_bound = np.sqrt(6.0 / (fan_in + fan_out))
        self.W = theano.shared(
            np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                       dtype=theano.config.floatX),  # @UndefinedVariable
            borrow=True)

        b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)  # @UndefinedVariable
        self.b = theano.shared(value=b_values, borrow=T)

        # ??????????????????
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape)

        # Max-pooling????????????????????
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True)

        # ????????
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        self.params = [self.W, self.b]
layers.py 文件源码 项目:3D-R2N2 作者: chrischoy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def set_output(self):
        if sum(self._padding) > 0:
            padded_input = tensor.alloc(0.0,  # Value to fill the tensor
                                        self._input_shape[0],
                                        self._input_shape[1],
                                        self._input_shape[2] + 2 * self._padding[2],
                                        self._input_shape[3] + 2 * self._padding[3])

            padded_input = tensor.set_subtensor(
                padded_input[:, :, self._padding[2]:self._padding[2] + self._input_shape[2],
                             self._padding[3]:self._padding[3] + self._input_shape[3]],
                self._prev_layer.output)

            padded_input_shape = [self._input_shape[0], self._input_shape[1],
                                  self._input_shape[2] + 2 * self._padding[2],
                                  self._input_shape[3] + 2 * self._padding[3]]
        else:
            padded_input = self._prev_layer.output
            padded_input_shape = self._input_shape

        conv_out = conv.conv2d(
            input=padded_input,
            filters=self.W.val,
            filter_shape=self._filter_shape,
            image_shape=np.asarray(
                padded_input_shape, dtype=np.int16),
            border_mode='valid')

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
        # thus be broadcasted across mini-batches and feature map
        # width & height
        self._output = conv_out + self.b.val.dimshuffle('x', 0, 'x', 'x')
layers.py 文件源码 项目:yadll 作者: pchavanne 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def conv(self, input, filters, image_shape, filter_shape):
        return conv.conv2d(input=input, filters=filters, image_shape=image_shape,
                           filter_shape=filter_shape, border_mode=self.border_mode, subsample=self.subsample)
network3.py 文件源码 项目:machine-deep_learning 作者: Charleswyt 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape(self.image_shape)
        conv_out = conv.conv2d(
            input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
            image_shape=self.image_shape)
        pooled_out = downsample.max_pool_2d(
            input=conv_out, ds=self.poolsize, ignore_border=True)
        self.output = self.activation_fn(
            pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.output_dropout = self.output # no dropout in the convolutional layers
train_rotconv.py 文件源码 项目:experiments 作者: tencia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def conv_and_pool(input_expr, w, convs_mult, p_drop_conv):
    conv_w = w
    if convs_mult == 2:
        conv_w = T.concatenate([w, w[:,:,::-1,::-1]], axis=0)
    elif convs_mult == 4:
        conv_w = T.concatenate([w, w[:,:,::-1], w[:,:,:,::-1], w[:,:,::-1,::-1]], axis=0)
    e1 = rectify(conv2d(input_expr, conv_w))
    e2 = max_pool_2d(e1, (2, 2), ignore_border=False)
    return dropout(e2, p_drop_conv)
train_rotconv.py 文件源码 项目:experiments 作者: tencia 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hid, convs_mult):
    l1 = conv_and_pool(X, w, convs_mult, p_drop_conv)
    l2 = conv_and_pool(l1, w2, convs_mult, p_drop_conv)
    l3 = conv_and_pool(l2, w3, convs_mult, p_drop_conv)
    l4 = rectify(conv2d(l3, w4))
    l4 = dropout(l4, p_drop_hid)
    l4 = T.flatten(l4, outdim=2)
    pyx = nn.nonlinearities.softmax(T.dot(l4, w_o))
    return pyx
convnade.py 文件源码 项目:NADE 作者: MarcCote 项目源码 文件源码 阅读 85 收藏 0 点赞 0 评论 0
def fprop(self, input, return_output_preactivation=False):
        conv_out = conv.conv2d(input, filters=self.W, border_mode=self.border_mode)
        # TODO: Could be faster if pooling was done here instead
        pre_output = conv_out + self.b.dimshuffle('x', 0, 'x', 'x')
        output = self.activation_fct(pre_output)

        if return_output_preactivation:
            return output, pre_output

        return output


问题


面经


文章

微信
公众号

扫码关注公众号