def __init__(self):
# ATF code
self.atf = ATF()
# native app code
self.pub_freq = 20.0 # Hz
self.br = tf.TransformBroadcaster()
rospy.sleep(1) #wait for tf broadcaster to get active (rospy bug?)
python类TransformBroadcaster()的实例源码
def __init__(self):
# initialize ROS node and transform publisher
rospy.init_node('crazyflie_detector', anonymous=True)
self.pub_tf = tf.TransformBroadcaster()
self.rate = rospy.Rate(50.0) # publish transform at 50 Hz
# initialize values for crazyflie location on Kinect v2 image
self.cf_u = 0 # u is pixels left(0) to right(+)
self.cf_v = 0 # v is pixels top(0) to bottom(+)
self.cf_d = 0 # d is distance camera(0) to crazyflie(+) from depth image
self.last_d = 0 # last non-zero depth measurement
# crazyflie orientation to Kinect v2 image (Euler)
self.r = -1.5708
self.p = 0
self.y = -3.1415
# Convert image from a ROS image message to a CV image
self.bridge = CvBridge()
cv2.namedWindow("KinectV2", 1)
# Wait for the camera_info topic to become available
rospy.wait_for_message('/kinect2/qhd/camera_info', CameraInfo)
# Subscribe to Kinect v2 sd camera_info to get image frame height and width
rospy.Subscriber('/kinect2/qhd/camera_info', CameraInfo, self.camera_data, queue_size=1)
# Subscribe to registered color and depth images
rospy.Subscriber('/kinect2/qhd/image_color_rect', Image, self.image_callback, queue_size=1)
rospy.Subscriber('/kinect2/qhd/image_depth_rect', Image, self.depth_callback, queue_size=1)
self.rate.sleep() # suspend until next cycle
# This callback function sets parameters regarding the camera.
def publish_odom(self, cur_x, cur_y, cur_theta, vx, vth):
quat = tf.transformations.quaternion_from_euler(0, 0, cur_theta)
current_time = rospy.Time.now()
br = tf.TransformBroadcaster()
br.sendTransform((cur_x, cur_y, 0),
tf.transformations.quaternion_from_euler(0, 0, cur_theta),
current_time,
"base_link",
"odom")
odom = Odometry()
odom.header.stamp = current_time
odom.header.frame_id = 'odom'
odom.pose.pose.position.x = cur_x
odom.pose.pose.position.y = cur_y
odom.pose.pose.position.z = 0.0
odom.pose.pose.orientation = Quaternion(*quat)
odom.pose.covariance[0] = 0.01
odom.pose.covariance[7] = 0.01
odom.pose.covariance[14] = 99999
odom.pose.covariance[21] = 99999
odom.pose.covariance[28] = 99999
odom.pose.covariance[35] = 0.01
odom.child_frame_id = 'base_link'
odom.twist.twist.linear.x = vx
odom.twist.twist.linear.y = 0
odom.twist.twist.angular.z = vth
odom.twist.covariance = odom.pose.covariance
self.odom_pub.publish(odom)
def publish_odom(self, cur_x, cur_y, cur_theta, vx, vth):
quat = tf.transformations.quaternion_from_euler(0, 0, cur_theta)
current_time = rospy.Time.now()
br = tf.TransformBroadcaster()
br.sendTransform((cur_x, cur_y, 0),
tf.transformations.quaternion_from_euler(0, 0, cur_theta),
current_time,
"base_link",
"odom")
odom = Odometry()
odom.header.stamp = current_time
odom.header.frame_id = 'odom'
odom.pose.pose.position.x = cur_x
odom.pose.pose.position.y = cur_y
odom.pose.pose.position.z = 0.0
odom.pose.pose.orientation = Quaternion(*quat)
odom.pose.covariance[0] = 0.01
odom.pose.covariance[7] = 0.01
odom.pose.covariance[14] = 99999
odom.pose.covariance[21] = 99999
odom.pose.covariance[28] = 99999
odom.pose.covariance[35] = 0.01
odom.child_frame_id = 'base_link'
odom.twist.twist.linear.x = vx
odom.twist.twist.linear.y = 0
odom.twist.twist.angular.z = vth
odom.twist.covariance = odom.pose.covariance
self.odom_pub.publish(odom)
def handle_msg_car(msg, who):
assert isinstance(msg, Odometry)
global last_cap_r, last_cap_f, last_cap_yaw
if who == 'cap_r':
last_cap_r = rtk_position_to_numpy(msg)
elif who == 'cap_f' and last_cap_r is not None:
cap_f = rtk_position_to_numpy(msg)
cap_r = last_cap_r
last_cap_f = cap_f
last_cap_yaw = get_yaw(cap_f, cap_r)
elif who == 'obs_r' and last_cap_f is not None and last_cap_yaw is not None:
md = None
for obs in metadata:
if obs['obstacle_name'] == 'obs1':
md = obs
assert md, 'obs1 metadata not found'
# find obstacle rear RTK to centroid vector
lrg_to_gps = [md['rear_gps_l'], -md['rear_gps_w'], md['rear_gps_h']]
lrg_to_centroid = [md['l'] / 2., -md['w'] / 2., md['h'] / 2.]
obs_r_to_centroid = np.subtract(lrg_to_centroid, lrg_to_gps)
# in the fixed GPS frame
cap_f = last_cap_f
obs_r = rtk_position_to_numpy(msg)
# in the capture vehicle front RTK frame
cap_to_obs = np.dot(rotMatZ(-last_cap_yaw), obs_r - cap_f)
cap_to_obs_centroid = cap_to_obs + obs_r_to_centroid
br = tf.TransformBroadcaster()
br.sendTransform(tuple(cap_to_obs_centroid), (0,0,0,1), rospy.Time.now(), 'obs_centroid', 'gps_antenna_front')
# publish obstacle bounding box
marker = Marker()
marker.header.frame_id = "obs_centroid"
marker.header.stamp = rospy.Time.now()
marker.type = Marker.CUBE
marker.action = Marker.ADD
marker.scale.x = md['l']
marker.scale.y = md['w']
marker.scale.z = md['h']
marker.color.r = 0.2
marker.color.g = 0.5
marker.color.b = 0.2
marker.color.a = 0.5
marker.lifetime = rospy.Duration()
pub = rospy.Publisher("obs_bbox", Marker, queue_size=10)
pub.publish(marker)
def handle_radar_msg(msg, dont_fuse):
assert msg._md5sum == '6a2de2f790cb8bb0e149d45d297462f8'
publish_rviz_topics = True
with g_fusion_lock:
# do we have any estimation?
if g_fusion.last_state_mean is not None:
pose = g_fusion.lidar_observation_function(g_fusion.last_state_mean)
observations = RadarObservation.from_msg(msg, RADAR_TO_LIDAR, 0.9115)
# find nearest observation to current object position estimation
distance_threshold = 4.4
nearest = None
nearest_dist = 1e9
for o in observations:
dist = [o.x - pose[0], o.y - pose[1], o.z - pose[2]]
dist = np.sqrt(np.array(dist).dot(dist))
if dist < nearest_dist and dist < distance_threshold:
nearest_dist = dist
nearest = o
if nearest is not None:
# FUSION
if not dont_fuse:
g_fusion.filter(nearest)
if publish_rviz_topics:
header = Header()
header.frame_id = '/velodyne'
header.stamp = rospy.Time.now()
point = np.array([[nearest.x, nearest.y, nearest.z]], dtype=np.float32)
rospy.Publisher(name='obj_radar_nearest',
data_class=PointCloud2,
queue_size=1).publish(pc2.create_cloud_xyz32(header, point))
#pose = g_fusion.lidar_observation_function(g_fusion.last_state_mean)
#br = ros_tf.TransformBroadcaster()
#br.sendTransform(tuple(pose), (0,0,0,1), rospy.Time.now(), 'car_fuse_centroid', 'velodyne')
# if last_known_box_size is not None:
# # bounding box
# marker = Marker()
# marker.header.frame_id = "car_fuse_centroid"
# marker.header.stamp = rospy.Time.now()
# marker.type = Marker.CUBE
# marker.action = Marker.ADD
# marker.scale.x = last_known_box_size[2]
# marker.scale.y = last_known_box_size[1]
# marker.scale.z = last_known_box_size[0]
# marker.color = ColorRGBA(r=1., g=1., b=0., a=0.5)
# marker.lifetime = rospy.Duration()
# pub = rospy.Publisher("car_fuse_bbox", Marker, queue_size=10)
# pub.publish(marker)
baxter_continuous_scan.py 文件源码
项目:cu-perception-manipulation-stack
作者: correlllab
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def move_cup(self):
self.gripper.close()
rotate = long(random.randrange(20, 180))*(3.14156)/(180)
print("rotate: " + str(rotate))
t = self.tl.getLatestCommonTime("/root", "/right_gripper")
cur_position, quaternion = self.tl.lookupTransform("/root",
"/right_gripper",
t)
quaternion = [1,0,0,0]
requrd_rot = (0,0,rotate) # in radians
requrd_trans = (0,0,0)
rotated_pose = self.getOffsetPoses(cur_position, quaternion, requrd_rot, requrd_trans)
trans_5= tuple(rotated_pose[:3])
quat_5= tuple(rotated_pose[3:])
br = tf.TransformBroadcaster()
br.sendTransform(trans_5,
quat_5,
rospy.Time.now(),
"pick_pose",
"/root")
pick_pose = PoseStamped(Header(0, rospy.Time(0), n.robot.base),
Pose(Point(*trans_5),
Quaternion(*quat_5)))
self.move_ik(pick_pose)
self.gripper.open()
t = self.tl.getLatestCommonTime("/root", "/right_gripper")
cur_position, quaternion = self.tl.lookupTransform("/root",
"/right_gripper",
t)
cur_position = list(cur_position)
cur_position[2] = cur_position[2] + 0.08
pose = Pose(Point(*cur_position),
Quaternion(*quaternion))
while True:
try:
stamped_pose = PoseStamped( Header(0, rospy.Time(0), n.robot.base), pose)
self.move_ik(stamped_pose)
break
except AttributeError:
print("can't find valid pose for gripper cause I'm dumb")
return False
rospy.sleep(2)
home = PoseStamped(
Header(0, rospy.Time(0), n.robot.base),
Pose(Point(0.60558, -0.24686, 0.093535),
Quaternion(0.99897, -0.034828, 0.027217, 0.010557)))
self.move_ik(home)
rospy.sleep(2)
safety_stop.py 文件源码
项目:cu-perception-manipulation-stack
作者: correlllab
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def control_from_sensor_values(self):
log_values = np.log(self.bx.inside)
# Match which side is which. Ideally, if the sign of the diff
# matches whether the gripper needs to move towards the
# positive or negative part of the y axis in left_gripper.
# That is, we need left side - right side (using left/right
# like in l_gripper_{l, r}_finger_tip tfs)
# We want to take log(values) for a better behaved controller
inside_diff = log_values[7:] - log_values[:7]
scalar_diff = sum(inside_diff) / len(inside_diff)
# Take negative for one of the sides, so that angles should
# match for a parallel object in the gripper
l_angle, _ = np.polyfit(np.arange(7), log_values[:7], 1)
r_angle, _ = np.polyfit(np.arange(7), -log_values[7:], 1)
rospy.loginfo('Angle computed from l: {}'.format(np.rad2deg(l_angle)))
rospy.loginfo('Angle computed from r: {}'.format(np.rad2deg(r_angle)))
avg_angle = np.arctan((l_angle + r_angle) / 2.0)
# Let's get a frame by the middle of the end effector
# p = Point(0, 0, -0.05)
p = (0, 0, -0.05)
# Of course, tf uses (w, x, y, z), Quaternion uses x, y, z,
# w. However, tf.TransformBroadcaster().sendTransform uses the
# tf order.
# q = Quaternion(q[1], q[2], q[3], q[0])
q = tf.transformations.quaternion_about_axis(avg_angle, (1, 0, 0))
# We had a lot of trouble sending a transform (p, q) from
# left_gripper, and then asking for a point in the last frame
# in the tf coordinate. Timing issues that I couldn't
# solve. Instead, do it manually here:
m1 = tf.transformations.quaternion_matrix(q)
m1[:3, 3] = p
p = (0, scalar_diff / 100, 0.05)
m2 = np.eye(4)
m2[:3, 3] = p
m = m2.dot(m1)
# Extract pose now
p = Point(*m[:3, 3])
q = Quaternion(*tf.transformations.quaternion_from_matrix(m))
time = rospy.Time(0)
h = Header()
h.frame_id = 'left_gripper'
h.stamp = time
pose = Pose(p, q)
new_endpose = self.tl.transformPose('base', PoseStamped(h, pose))
self.bx.move_ik(new_endpose)
def __init__(self, robot, *robotargs):
super(PickAndPlaceNode, self).__init__('pp_node')
rospy.loginfo("PickAndPlaceNode")
_post_perceive_trans = defaultdict(lambda: self._pick)
_post_perceive_trans.update({'c': self._calibrate})
_preplace = defaultdict(lambda: self._preplace)
self.transition_table = {
# If calibration has already happened, allow skipping it
'initial': {'c': self._calibrate, 'q': self._perceive,
's': self._preplace},
'calibrate': {'q': self._perceive, 'c': self._calibrate},
'perceive': {'p': self._post_perceive, 'q': self._perceive, 's': self._stop_perceive, 'c': self._calibrate},
'post_perceive': _post_perceive_trans,
'postpick': {'1': self._level, '2': self._level, '9': self._level},
'level': _preplace,
'preplace': {'s': self._place},
'place': {'q': self._perceive, 'c': self._calibrate}
}
rospy.loginfo("PickAndPlaceNode1")
if callable(robot):
self.robot = robot(*robotargs)
else:
self.robot = robot
self.robot.level = 1
rospy.loginfo("PickAndPlaceNode2")
# Hardcoded place for now
self.place_pose = PoseStamped(
Header(0, rospy.Time(0), self.robot.base),
Pose(Point(0.526025806, 0.4780144, -0.161326153),
Quaternion(1, 0, 0, 0)))
self.tl = tf.TransformListener()
self.num_objects = 0
# Would this work too? Both tf and tf2 have (c) 2008...
# self.tf2 = tf2_ros.TransformListener()
self.n_objects_sub = rospy.Subscriber("/num_objects", Int64,
self.update_num_objects,
queue_size=1)
self.perception_pub = rospy.Publisher("/perception/enabled",
Bool,
queue_size=1)
self.alignment_pub = rospy.Publisher("/alignment/doit",
Bool,
queue_size=1)
self.br = tf.TransformBroadcaster()
rospy.loginfo("PickAndPlaceNode3")
self.int_marker_server = InteractiveMarkerServer('int_markers')
# Dict to map imarker names and their updated poses
self.int_markers = {}
# Ideally this call would be in a Factory/Metaclass/Parent
self.show_options()
self.perceive = False
# self.robot.home()
# self.move_calib_position()