python类assert_type()的实例源码

metric_specs.py 文件源码 项目:seq2seq 作者: google 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def accumulate_strings(values, name="strings"):
  """Accumulates strings into a vector.

  Args:
    values: A 1-d string tensor that contains values to add to the accumulator.

  Returns:
    A tuple (value_tensor, update_op).
  """
  tf.assert_type(values, tf.string)
  strings = tf.Variable(
      name=name,
      initial_value=[],
      dtype=tf.string,
      trainable=False,
      collections=[],
      validate_shape=True)
  value_tensor = tf.identity(strings)
  update_op = tf.assign(
      ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
  return value_tensor, update_op
metric_specs.py 文件源码 项目:conv_seq2seq 作者: tobyyouup 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def accumulate_strings(values, name="strings"):
  """Accumulates strings into a vector.

  Args:
    values: A 1-d string tensor that contains values to add to the accumulator.

  Returns:
    A tuple (value_tensor, update_op).
  """
  tf.assert_type(values, tf.string)
  strings = tf.Variable(
      name=name,
      initial_value=[],
      dtype=tf.string,
      trainable=False,
      collections=[],
      validate_shape=True)
  value_tensor = tf.identity(strings)
  update_op = tf.assign(
      ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
  return value_tensor, update_op
metrics.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def accumulate_strings(values, name="strings"):
    """Accumulates strings into a vector.

    Args:
      values: A 1-d string tensor that contains values to add to the accumulator.

    Returns:
      A tuple (value_tensor, update_op).
    """
    tf.assert_type(values, tf.string)
    strings = tf.Variable(
        name=name,
        initial_value=[],
        dtype=tf.string,
        trainable=False,
        collections=[],
        validate_shape=True)
    value_tensor = tf.identity(strings)
    update_op = tf.assign(
        ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
    return value_tensor, update_op
metric_specs.py 文件源码 项目:automatic-summarization 作者: mozilla 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def accumulate_strings(values, name="strings"):
  """Accumulates strings into a vector.

  Args:
    values: A 1-d string tensor that contains values to add to the accumulator.

  Returns:
    A tuple (value_tensor, update_op).
  """
  tf.assert_type(values, tf.string)
  strings = tf.Variable(
      name=name,
      initial_value=[],
      dtype=tf.string,
      trainable=False,
      collections=[],
      validate_shape=True)
  value_tensor = tf.identity(strings)
  update_op = tf.assign(
      ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
  return value_tensor, update_op
images_demo.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def convolve(image, pixel_filter, channels=3, name=None):
  """Perform a 2D pixel convolution on the given image.

  Arguments:
    image: A 3D `float32` `Tensor` of shape `[height, width, channels]`,
      where `channels` is the third argument to this function and the
      first two dimensions are arbitrary.
    pixel_filter: A 2D `Tensor`, representing pixel weightings for the
      kernel. This will be used to create a 4D kernel---the extra two
      dimensions are for channels (see `tf.nn.conv2d` documentation),
      and the kernel will be constructed so that the channels are
      independent: each channel only observes the data from neighboring
      pixels of the same channel.
    channels: An integer representing the number of channels in the
      image (e.g., 3 for RGB).

  Returns:
    A 3D `float32` `Tensor` of the same shape as the input.
  """
  with tf.name_scope(name, 'convolve'):
    tf.assert_type(image, tf.float32)
    channel_filter = tf.eye(channels)
    filter_ = (tf.expand_dims(tf.expand_dims(pixel_filter, -1), -1) *
               tf.expand_dims(tf.expand_dims(channel_filter, 0), 0))
    result_batch = tf.nn.conv2d(tf.stack([image]),  # batch
                                filter=filter_,
                                strides=[1, 1, 1, 1],
                                padding='SAME')
    return result_batch[0]  # unbatch
summary.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _buckets(data, bucket_count=None):
  """Create a TensorFlow op to group data into histogram buckets.

  Arguments:
    data: A `Tensor` of any shape. Must be castable to `float64`.
    bucket_count: Optional positive `int` or scalar `int32` `Tensor`.
  Returns:
    A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
    a triple `[left_edge, right_edge, count]` for a single bucket.
    The value of `k` is either `bucket_count` or `1` or `0`.
  """
  if bucket_count is None:
    bucket_count = DEFAULT_BUCKET_COUNT
  with tf.name_scope('buckets', values=[data, bucket_count]), \
       tf.control_dependencies([tf.assert_scalar(bucket_count),
                                tf.assert_type(bucket_count, tf.int32)]):
    data = tf.reshape(data, shape=[-1])  # flatten
    data = tf.cast(data, tf.float64)
    is_empty = tf.equal(tf.size(data), 0)

    def when_empty():
      return tf.constant([], shape=(0, 3), dtype=tf.float64)

    def when_nonempty():
      min_ = tf.reduce_min(data)
      max_ = tf.reduce_max(data)
      range_ = max_ - min_
      is_singular = tf.equal(range_, 0)

      def when_nonsingular():
        bucket_width = range_ / tf.cast(bucket_count, tf.float64)
        offsets = data - min_
        bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
                                 dtype=tf.int32)
        clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
        one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
        bucket_counts = tf.cast(tf.reduce_sum(one_hots, axis=0),
                                dtype=tf.float64)
        edges = tf.lin_space(min_, max_, bucket_count + 1)
        left_edges = edges[:-1]
        right_edges = edges[1:]
        return tf.transpose(tf.stack(
            [left_edges, right_edges, bucket_counts]))

      def when_singular():
        center = min_
        bucket_starts = tf.stack([center - 0.5])
        bucket_ends = tf.stack([center + 0.5])
        bucket_counts = tf.stack([tf.cast(tf.size(data), tf.float64)])
        return tf.transpose(
            tf.stack([bucket_starts, bucket_ends, bucket_counts]))

      return tf.cond(is_singular, when_singular, when_nonsingular)

    return tf.cond(is_empty, when_empty, when_nonempty)
summary.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def op(name,
       data,
       display_name=None,
       description=None,
       collections=None):
  """Create a text summary op.

  Text data summarized via this plugin will be visible in the Text Dashboard
  in TensorBoard. The standard TensorBoard Text Dashboard will render markdown
  in the strings, and will automatically organize 1D and 2D tensors into tables.
  If a tensor with more than 2 dimensions is provided, a 2D subarray will be
  displayed along with a warning message. (Note that this behavior is not
  intrinsic to the text summary API, but rather to the default TensorBoard text
  plugin.)

  Args:
    name: A name for the generated node. Will also serve as a series name in
      TensorBoard.
    data: A string-type Tensor to summarize. The text must be encoded in UTF-8.
    display_name: Optional name for this summary in TensorBoard, as a
      constant `str`. Defaults to `name`.
    description: Optional long-form description for this summary, as a
      constant `str`. Markdown is supported. Defaults to empty.
    collections: Optional list of ops.GraphKeys. The collections to which to add
      the summary. Defaults to [Graph Keys.SUMMARIES].

  Returns:
    A TensorSummary op that is configured so that TensorBoard will recognize
    that it contains textual data. The TensorSummary is a scalar `Tensor` of
    type `string` which contains `Summary` protobufs.

  Raises:
    ValueError: If tensor has the wrong type.
  """
  if display_name is None:
    display_name = name
  summary_metadata = metadata.create_summary_metadata(
      display_name=display_name, description=description)
  with tf.name_scope(name):
    with tf.control_dependencies([tf.assert_type(data, tf.string)]):
      return tf.summary.tensor_summary(name='text_summary',
                                       tensor=data,
                                       collections=collections,
                                       summary_metadata=summary_metadata)
summary.py 文件源码 项目:tensorboard 作者: tensorflow 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def op(name,
       images,
       max_outputs=3,
       display_name=None,
       description=None,
       collections=None):
  """Create an image summary op for use in a TensorFlow graph.

  Arguments:
    name: A unique name for the generated summary node.
    images: A `Tensor` representing pixel data with shape `[k, w, h, c]`,
      where `k` is the number of images, `w` and `h` are the width and
      height of the images, and `c` is the number of channels, which
      should be 1, 3, or 4. Any of the dimensions may be statically
      unknown (i.e., `None`).
    max_outputs: Optional `int` or rank-0 integer `Tensor`. At most this
      many images will be emitted at each step. When more than
      `max_outputs` many images are provided, the first `max_outputs` many
      images will be used and the rest silently discarded.
    display_name: Optional name for this summary in TensorBoard, as a
      constant `str`. Defaults to `name`.
    description: Optional long-form description for this summary, as a
      constant `str`. Markdown is supported. Defaults to empty.
    collections: Optional list of graph collections keys. The new
      summary op is added to these collections. Defaults to
      `[Graph Keys.SUMMARIES]`.

  Returns:
    A TensorFlow summary op.
  """
  if display_name is None:
    display_name = name
  summary_metadata = metadata.create_summary_metadata(
      display_name=display_name, description=description)
  with tf.name_scope(name), \
       tf.control_dependencies([tf.assert_rank(images, 4),
                                tf.assert_type(images, tf.uint8),
                                tf.assert_non_negative(max_outputs)]):
    limited_images = images[:max_outputs]
    encoded_images = tf.map_fn(tf.image.encode_png, limited_images,
                               dtype=tf.string,
                               name='encode_each_image')
    image_shape = tf.shape(images)
    dimensions = tf.stack([tf.as_string(image_shape[1], name='width'),
                           tf.as_string(image_shape[2], name='height')],
                          name='dimensions')
    tensor = tf.concat([dimensions, encoded_images], axis=0)
    return tf.summary.tensor_summary(name='image_summary',
                                     tensor=tensor,
                                     collections=collections,
                                     summary_metadata=summary_metadata)


问题


面经


文章

微信
公众号

扫码关注公众号