python类initialize_all_tables()的实例源码

model.py 文件源码 项目:AM-GAN 作者: ZhimingZhou 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def model_initilization(self, cfg):

        ############################################################################################################################################
        def initialization():
            var_list = tf.global_variables()
            for var in var_list:
                self.sess.run(tf.variables_initializer([var]), feed_dict={self.z: self.sample_z[:cfg.iBatchSize], self.images_lab: self.sample_images[:cfg.iBatchSize], self.fInputNoise: cfg.fInputNoise})
                print(var.op.name)

            #self.sess.run(tf.initialize_all_tables(), feed_dict={self.z: self.sample_z[:cfg.iBatchSize], self.images_lab: self.sample_images[:cfg.iBatchSize], self.fInputNoise: cfg.fInputNoiseBiG})

        print('optimizor initialization')

        if cfg.bLoadCheckpoint:
            if self.load(cfg):
                print(" [*] Load SUCCESS")
            else:
                print(" [!] Load failed...")
                initialization()
        else:
            initialization()
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testWeightedSparseColumn(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    output = feature_column_ops._Transformer(features).transform(weighted_ids)
    with self.test_session():
      tf.initialize_all_tables().run()
      self.assertAllEqual(output[0].shape.eval(), ids_tensor.shape.eval())
      self.assertAllEqual(output[0].indices.eval(), ids_tensor.indices.eval())
      self.assertAllEqual(output[0].values.eval(), [2, 2, 0])
      self.assertAllEqual(output[1].shape.eval(), weights_tensor.shape.eval())
      self.assertAllEqual(output[1].indices.eval(),
                          weights_tensor.indices.eval())
      self.assertEqual(output[1].values.dtype, tf.float32)
      self.assertAllEqual(output[1].values.eval(), weights_tensor.values.eval())
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testAllDNNColumns(self):
    sparse_column = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["a", "b", "c", "unseen"])

    real_valued_column = tf.contrib.layers.real_valued_column("income", 2)
    one_hot_column = tf.contrib.layers.one_hot_column(sparse_column)
    embedding_column = tf.contrib.layers.embedding_column(sparse_column, 10)
    features = {
        "ids": tf.SparseTensor(
            values=["c", "b", "a"],
            indices=[[0, 0], [1, 0], [2, 0]],
            shape=[3, 1]),
        "income": tf.constant([[20.3, 10], [110.3, 0.4], [-3.0, 30.4]])
    }
    output = tf.contrib.layers.input_from_feature_columns(features,
                                                          [one_hot_column,
                                                           embedding_column,
                                                           real_valued_column])
    with self.test_session():
      tf.initialize_all_variables().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual(output.eval().shape, [3, 2 + 4 + 10])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testOneHotColumnFromWeightedSparseColumnFails(self):
    ids_column = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["a", "b", "c", "unseen"])
    ids_tensor = tf.SparseTensor(
        values=["c", "b", "a", "c"],
        indices=[[0, 0], [1, 0], [2, 0], [2, 1]],
        shape=[3, 2])
    weighted_ids_column = tf.contrib.layers.weighted_sparse_column(ids_column,
                                                                   "weights")
    weights_tensor = tf.SparseTensor(
        values=[10.0, 20.0, 30.0, 40.0],
        indices=[[0, 0], [1, 0], [2, 0], [2, 1]],
        shape=[3, 2])
    features = {"ids": ids_tensor, "weights": weights_tensor}
    one_hot_column = tf.contrib.layers.one_hot_column(weighted_ids_column)
    with self.test_session():
      tf.initialize_all_variables().run()
      tf.initialize_all_tables().run()
      with self.assertRaisesRegexp(
          ValueError,
          "one_hot_column does not yet support weighted_sparse_column"):
        _ = tf.contrib.layers.input_from_feature_columns(features,
                                                         [one_hot_column])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testEmbeddingColumnWithWeightedSparseColumnSucceedsForDNN(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    embeded_sparse = tf.contrib.layers.embedding_column(weighted_ids, 10)
    output = tf.contrib.layers.input_from_feature_columns(features,
                                                          [embeded_sparse])
    with self.test_session():
      tf.initialize_all_variables().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual(output.eval().shape, [2, 10])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testWeightedSparseColumnFailsForDNN(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    with self.test_session():
      with self.assertRaisesRegexp(
          ValueError,
          "Error creating input layer for column: ids_weighted_by_weights"):
        tf.initialize_all_tables().run()
        tf.contrib.layers.input_from_feature_columns(features, [weighted_ids])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testEmbeddingColumnWithWeightedSparseColumnForDNN(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    embeded_sparse = tf.contrib.layers.embedding_column(
        weighted_ids, 1, combiner="sum", initializer=init_ops.ones_initializer)
    output = tf.contrib.layers.input_from_feature_columns(features,
                                                          [embeded_sparse])
    with self.test_session():
      tf.initialize_all_variables().run()
      tf.initialize_all_tables().run()
      # score: (sum of weights)
      self.assertAllEqual(output.eval(), [[10.], [50.]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testWeightedSparseColumn(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    logits, _, _ = tf.contrib.layers.weighted_sum_from_feature_columns(
        features, [weighted_ids], num_outputs=5)
    with self.test_session():
      tf.initialize_all_variables().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual(logits.eval().shape, [2, 5])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def testPredictionsWithMultivalentColumnButNoCross(self):
    language = tf.contrib.layers.sparse_column_with_keys(
        column_name="language",
        keys=["english", "turkish", "hindi"])
    with tf.Graph().as_default():
      features = {
          "language": tf.SparseTensor(values=["hindi", "english"],
                                      indices=[[0, 0], [0, 1]],
                                      shape=[1, 2])
      }
      output, column_to_variable, bias = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [language],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()

        # score: 0.1 + language_weight['hindi'] + language_weight['english']
        sess.run(bias.assign([0.1]))
        sess.run(column_to_variable[language][0].assign([[0.1], [0.3], [0.2]]))
        self.assertAllClose(output.eval(), [[0.4]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def testSparseFeatureColumnWithHashedBucketSize(self):
    movies = tf.contrib.layers.sparse_column_with_hash_bucket(
        column_name="movies", hash_bucket_size=15)
    with tf.Graph().as_default():
      features = {
          "movies": tf.SparseTensor(
              values=["matrix", "head-on", "winter sleep"],
              indices=[[0, 0], [0, 1], [1, 0]],
              shape=[2, 2])
      }
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [movies],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()

        weights = column_to_variable[movies][0]
        self.assertEqual(weights.get_shape(), (15, 1))
        sess.run(weights.assign(weights + 0.4))
        # score for first example = 0.4 (matrix) + 0.4 (head-on) = 0.8
        # score for second example = 0.4 (winter sleep)
        self.assertAllClose(output.eval(), [[0.8], [0.4]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testRealValuedColumnHavingMultiDimensions(self):
    country = tf.contrib.layers.sparse_column_with_hash_bucket(
        "country", hash_bucket_size=5)
    age = tf.contrib.layers.real_valued_column("age")
    # The following RealValuedColumn has 3 dimensions.
    incomes = tf.contrib.layers.real_valued_column("incomes", 3)

    with tf.Graph().as_default():
      features = {"age": tf.constant([[1], [1]]),
                  "incomes": tf.constant([[100., 200., 300.], [10., 20., 30.]]),
                  "country": tf.SparseTensor(values=["US", "SV"],
                                             indices=[[0, 0], [1, 0]],
                                             shape=[2, 2])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(
              features, [country, age, incomes],
              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()

        incomes_weights = column_to_variable[incomes][0]
        sess.run(incomes_weights.assign([[0.1], [0.2], [0.3]]))
        self.assertAllClose(output.eval(), [[140.], [14.]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testBucketizedColumn(self):
    bucket = tf.contrib.layers.bucketized_column(
        tf.contrib.layers.real_valued_column("price"),
        boundaries=[0., 10., 100.])
    with tf.Graph().as_default():
      # buckets 2, 3, 0
      features = {"price": tf.constant([[20.], [110], [-3]])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [bucket],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()

        sess.run(column_to_variable[bucket][0].assign([[0.1], [0.2], [0.3], [0.4
                                                                            ]]))
        self.assertAllClose(output.eval(), [[0.3], [0.4], [0.1]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testIntegerizedColumn(self):
    product = tf.contrib.layers.sparse_column_with_integerized_feature(
        "product", bucket_size=5)
    with tf.Graph().as_default():
      features = {"product": tf.SparseTensor(values=[0, 4, 2],
                                             indices=[[0, 0], [1, 0], [2, 0]],
                                             shape=[3, 1])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [product],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()
        product_weights = column_to_variable[product][0]
        sess.run(product_weights.assign([[0.1], [0.2], [0.3], [0.4], [0.5]]))
        self.assertAllClose(output.eval(), [[0.1], [0.5], [0.3]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testIntegerizedColumnWithInvalidId(self):
    product = tf.contrib.layers.sparse_column_with_integerized_feature(
        "product", bucket_size=5)
    with tf.Graph().as_default():
      features = {"product": tf.SparseTensor(values=[5, 4, 7],
                                             indices=[[0, 0], [1, 0], [2, 0]],
                                             shape=[3, 1])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [product],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()
        product_weights = column_to_variable[product][0]
        sess.run(product_weights.assign([[0.1], [0.2], [0.3], [0.4], [0.5]]))
        self.assertAllClose(output.eval(), [[0.1], [0.5], [0.3]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testMulticlassWithRealValuedColumn(self):
    with tf.Graph().as_default():
      column = tf.contrib.layers.real_valued_column("age")
      features = {"age": tf.constant([[10.], [20.], [30.], [40.]])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [column],
                                                              num_outputs=3))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()
        weights = column_to_variable[column][0]
        self.assertEqual(weights.get_shape(), (1, 3))
        sess.run(weights.assign([[0.01, 0.03, 0.05]]))
        self.assertAllClose(output.eval(), [[0.1, 0.3, 0.5], [0.2, 0.6, 1.0],
                                            [0.3, 0.9, 1.5], [0.4, 1.2, 2.0]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testMulticlassWithSparseColumn(self):
    with tf.Graph().as_default():
      column = tf.contrib.layers.sparse_column_with_keys(
          column_name="language",
          keys=["english", "arabic", "hindi", "russian", "swahili"])
      features = {
          "language": tf.SparseTensor(
              values=["hindi", "english", "arabic", "russian"],
              indices=[[0, 0], [1, 0], [2, 0], [3, 0]],
              shape=[4, 1])
      }
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [column],
                                                              num_outputs=3))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()
        weights = column_to_variable[column][0]
        self.assertEqual(weights.get_shape(), (5, 3))
        sess.run(weights.assign([[0.1, 0.4, 0.7], [0.2, 0.5, 0.8],
                                 [0.3, 0.6, 0.9], [0.4, 0.7, 1.0], [0.5, 0.8,
                                                                    1.1]]))
        self.assertAllClose(output.eval(), [[0.3, 0.6, 0.9], [0.1, 0.4, 0.7],
                                            [0.2, 0.5, 0.8], [0.4, 0.7, 1.0]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testMulticlassWithBucketizedColumn(self):
    column = tf.contrib.layers.bucketized_column(
        tf.contrib.layers.real_valued_column("price"),
        boundaries=[0., 100., 500., 1000.])
    with tf.Graph().as_default():
      # buckets 0, 2, 1, 2
      features = {"price": tf.constant([[-3], [110], [20.], [210]])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [column],
                                                              num_outputs=3))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()

        weights = column_to_variable[column][0]
        self.assertEqual(weights.get_shape(), (5, 3))
        sess.run(weights.assign([[0.1, 0.4, 0.7], [0.2, 0.5, 0.8],
                                 [0.3, 0.6, 0.9], [0.4, 0.7, 1.0], [0.5, 0.8,
                                                                    1.1]]))
        self.assertAllClose(output.eval(), [[0.1, 0.4, 0.7], [0.3, 0.6, 0.9],
                                            [0.2, 0.5, 0.8], [0.3, 0.6, 0.9]])
dynamic_rnn_estimator_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testConstructRNN(self):
    initial_state = None
    sequence_input = dynamic_rnn_estimator.build_sequence_input(
        self.columns_to_tensors,
        self.sequence_feature_columns,
        self.context_feature_columns)
    activations_t, final_state_t = dynamic_rnn_estimator.construct_rnn(
        initial_state,
        sequence_input,
        self.rnn_cell,
        self.mock_target_column.num_label_columns)

    # Obtain values of activations and final state.
    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(tf.initialize_all_tables())
      activations, final_state = sess.run([activations_t, final_state_t])

    expected_activations_shape = np.array([3, 2, self.NUM_LABEL_COLUMNS])
    self.assertAllEqual(expected_activations_shape, activations.shape)
    expected_state_shape = np.array([3, self.NUM_RNN_CELL_UNITS])
    self.assertAllEqual(expected_state_shape, final_state.shape)
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testSparseColumnWithKeys(self):
    keys_sparse = tf.contrib.layers.sparse_column_with_keys(
        "wire", ["marlo", "omar", "stringer"])
    wire_tensor = tf.SparseTensor(values=["omar", "stringer", "marlo"],
                                  indices=[[0, 0], [1, 0], [1, 1]],
                                  shape=[2, 2])
    features = {"wire": wire_tensor}
    # Test transform features.
    output = tf.contrib.layers.transform_features(
        features=features, feature_columns=[keys_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(keys_sparse, output)
    with self.test_session():
      tf.initialize_all_tables().run()
      self.assertEqual(output[keys_sparse].values.dtype, tf.int64)
      self.assertAllEqual(output[keys_sparse].values.eval(), [1, 2, 0])
      self.assertAllEqual(output[keys_sparse].indices.eval(),
                          wire_tensor.indices.eval())
      self.assertAllEqual(output[keys_sparse].shape.eval(),
                          wire_tensor.shape.eval())
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testSparseColumnWithKeysWithDenseInputTensor(self):
    keys_sparse = tf.contrib.layers.sparse_column_with_keys(
        "wire", ["marlo", "omar", "stringer", "rick"])
    wire_tensor = tf.constant([["omar", "stringer"], ["marlo", "rick"]])

    features = {"wire": wire_tensor}
    output = feature_column_ops._Transformer(features).transform(keys_sparse)

    with self.test_session():
      tf.initialize_all_tables().run()
      # While the input is a dense Tensor, the output should be a SparseTensor.
      self.assertIsInstance(output, tf.SparseTensor)
      self.assertEqual(output.dtype, tf.int64)
      self.assertAllEqual(output.values.eval(), [1, 2, 0, 3])
      self.assertAllEqual(output.indices.eval(),
                          [[0, 0], [0, 1], [1, 0], [1, 1]])
      self.assertAllEqual(output.shape.eval(), [2, 2])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testOneHotColumnFromWeightedSparseColumnFails(self):
    ids_column = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["a", "b", "c", "unseen"])
    ids_tensor = tf.SparseTensor(
        values=["c", "b", "a", "c"],
        indices=[[0, 0], [1, 0], [2, 0], [2, 1]],
        shape=[3, 2])
    weighted_ids_column = tf.contrib.layers.weighted_sparse_column(ids_column,
                                                                   "weights")
    weights_tensor = tf.SparseTensor(
        values=[10.0, 20.0, 30.0, 40.0],
        indices=[[0, 0], [1, 0], [2, 0], [2, 1]],
        shape=[3, 2])
    features = {"ids": ids_tensor, "weights": weights_tensor}
    one_hot_column = tf.contrib.layers.one_hot_column(weighted_ids_column)
    with self.test_session():
      tf.global_variables_initializer().run()
      tf.initialize_all_tables().run()
      with self.assertRaisesRegexp(
          ValueError,
          "one_hot_column does not yet support weighted_sparse_column"):
        _ = tf.contrib.layers.input_from_feature_columns(features,
                                                         [one_hot_column])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testOneHotColumnFromMultivalentSparseColumnWithKeysSucceedsForDNN(self):
    ids_column = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["a", "b", "c", "unseen"])
    ids_tensor = tf.SparseTensor(
        values=["c", "b", "a", "c"],
        indices=[[0, 0], [1, 0], [2, 0], [2, 1]],
        shape=[3, 2])
    one_hot_sparse = tf.contrib.layers.one_hot_column(ids_column)
    features = {"ids": ids_tensor}
    output = tf.contrib.layers.input_from_feature_columns(features,
                                                          [one_hot_sparse])

    with self.test_session():
      tf.global_variables_initializer().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 1, 0]],
                          output.eval())
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testEmbeddingColumnWithWeightedSparseColumnSucceedsForDNN(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    embeded_sparse = tf.contrib.layers.embedding_column(weighted_ids, 10)
    output = tf.contrib.layers.input_from_feature_columns(features,
                                                          [embeded_sparse])
    with self.test_session():
      tf.global_variables_initializer().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual(output.eval().shape, [2, 10])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testEmbeddingColumnWithWeightedSparseColumnForDNN(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[3, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[3, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    embeded_sparse = tf.contrib.layers.embedding_column(
        weighted_ids,
        1,
        combiner="sum",
        initializer=init_ops.ones_initializer())
    output = tf.contrib.layers.input_from_feature_columns(features,
                                                          [embeded_sparse])
    with self.test_session():
      tf.global_variables_initializer().run()
      tf.initialize_all_tables().run()
      # score: (sum of weights)
      self.assertAllEqual(output.eval(), [[10.], [50.], [0.]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testOneHotColumnFromSparseColumnWithHashBucket(self):
    hash_buckets = 10
    ids_tensor = tf.SparseTensor(
        values=["c", "b",
                "a", "c", "b",
                "b"],
        indices=[[0, 0, 0], [0, 1, 0],
                 [1, 0, 0], [1, 0, 1], [1, 1, 0],
                 [3, 2, 0]],
        shape=[4, 3, 2])

    hashed_ids_column = tf.contrib.layers.sparse_column_with_hash_bucket(
        "ids", hash_buckets)
    one_hot_column = tf.contrib.layers.one_hot_column(hashed_ids_column)
    columns_to_tensors = {"ids": ids_tensor}
    model_input_tensor = tf.contrib.layers.sequence_input_from_feature_columns(
        columns_to_tensors, [one_hot_column])

    with self.test_session() as sess:
      tf.global_variables_initializer().run()
      tf.initialize_all_tables().run()
      model_input = sess.run(model_input_tensor)

    expected_input_shape = np.array([4, 3, hash_buckets])
    self.assertAllEqual(expected_input_shape, model_input.shape)
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testWeightedSparseColumn(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer"])
    ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"],
                                 indices=[[0, 0], [1, 0], [1, 1]],
                                 shape=[2, 2])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0],
                                     indices=[[0, 0], [1, 0], [1, 1]],
                                     shape=[2, 2])
    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    logits, _, _ = tf.contrib.layers.weighted_sum_from_feature_columns(
        features, [weighted_ids], num_outputs=5)
    with self.test_session():
      tf.global_variables_initializer().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual(logits.eval().shape, [2, 5])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testWeightedSparseColumnWithDenseInputTensor(self):
    ids = tf.contrib.layers.sparse_column_with_keys(
        "ids", ["marlo", "omar", "stringer", "rick"])
    ids_tensor = tf.constant([["omar", "stringer"], ["marlo", "rick"]])
    weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights")
    weights_tensor = tf.constant([[10.0, 20.0], [30.0, 40.0]])

    features = {"ids": ids_tensor,
                "weights": weights_tensor}
    logits, _, _ = tf.contrib.layers.weighted_sum_from_feature_columns(
        features, [weighted_ids], num_outputs=5)

    with self.test_session():
      tf.initialize_all_variables().run()
      tf.initialize_all_tables().run()
      self.assertAllEqual(logits.eval().shape, [2, 5])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def testSparseFeatureColumnWithHashedBucketSize(self):
    movies = tf.contrib.layers.sparse_column_with_hash_bucket(
        column_name="movies", hash_bucket_size=15)
    with tf.Graph().as_default():
      features = {
          "movies": tf.SparseTensor(
              values=["matrix", "head-on", "winter sleep"],
              indices=[[0, 0], [0, 1], [1, 0]],
              shape=[2, 2])
      }
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [movies],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.global_variables_initializer().run()
        tf.initialize_all_tables().run()

        weights = column_to_variable[movies][0]
        self.assertEqual(weights.get_shape(), (15, 1))
        sess.run(weights.assign(weights + 0.4))
        # score for first example = 0.4 (matrix) + 0.4 (head-on) = 0.8
        # score for second example = 0.4 (winter sleep)
        self.assertAllClose(output.eval(), [[0.8], [0.4]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testCrossColumnByItself(self):
    language = tf.contrib.layers.sparse_column_with_hash_bucket(
        "language", hash_bucket_size=3)
    language_language = tf.contrib.layers.crossed_column(
        [language, language], hash_bucket_size=10)
    with tf.Graph().as_default():
      features = {
          "language": tf.SparseTensor(values=["english", "spanish"],
                                      indices=[[0, 0], [0, 1]],
                                      shape=[1, 2]),
      }
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(
              features, [language_language],
              num_outputs=1))
      with self.test_session() as sess:
        tf.global_variables_initializer().run()
        tf.initialize_all_tables().run()

        weights = column_to_variable[language_language][0]
        sess.run(weights.assign(weights + 0.4))
        # There are two features inside language. If we cross it by itself we'll
        # have four crossed features.
        self.assertAllClose(output.eval(), [[1.6]])
feature_column_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testBucketizedColumn(self):
    bucket = tf.contrib.layers.bucketized_column(
        tf.contrib.layers.real_valued_column("price"),
        boundaries=[0., 10., 100.])
    with tf.Graph().as_default():
      # buckets 2, 3, 0
      features = {"price": tf.constant([[20.], [110], [-3]])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(features,
                                                              [bucket],
                                                              num_outputs=1))
      with self.test_session() as sess:
        tf.global_variables_initializer().run()
        tf.initialize_all_tables().run()

        sess.run(column_to_variable[bucket][0].assign([[0.1], [0.2], [0.3], [0.4
                                                                            ]]))
        self.assertAllClose(output.eval(), [[0.3], [0.4], [0.1]])


问题


面经


文章

微信
公众号

扫码关注公众号