python类complex()的实例源码

urnn_cell.py 文件源码 项目:urnn 作者: Rand0mUsername 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def call(self, inputs, state):
        """The most basic URNN cell.
        Args:
            inputs (Tensor - batch_sz x num_in): One batch of cell input.
            state (Tensor - batch_sz x num_units): Previous cell state: COMPLEX
        Returns:
        A tuple (outputs, state):
            outputs (Tensor - batch_sz x num_units*2): Cell outputs on the whole batch.
            state (Tensor - batch_sz x num_units): New state of the cell.
        """
        #print("cell.call inputs:", inputs.shape, inputs.dtype)
        #print("cell.call state:", state.shape, state.dtype)

        # prepare input linear combination
        inputs_mul = tf.matmul(inputs, tf.transpose(self.w_ih)) # [batch_sz, 2*num_units]
        inputs_mul_c = tf.complex( inputs_mul[:, :self._num_units], 
                                   inputs_mul[:, self._num_units:] ) 
        # [batch_sz, num_units]

        # prepare state linear combination (always complex!)
        state_c = tf.complex( state[:, :self._num_units], 
                              state[:, self._num_units:] ) 

        state_mul = self.D1.mul(state_c)
        state_mul = FFT(state_mul)
        state_mul = self.R1.mul(state_mul)
        state_mul = self.P.mul(state_mul)
        state_mul = self.D2.mul(state_mul)
        state_mul = IFFT(state_mul)
        state_mul = self.R2.mul(state_mul)
        state_mul = self.D3.mul(state_mul) 
        # [batch_sz, num_units]

        # calculate preactivation
        preact = inputs_mul_c + state_mul
        # [batch_sz, num_units]

        new_state_c = modReLU(preact, self.b_h) # [batch_sz, num_units] C
        new_state = tf.concat([tf.real(new_state_c), tf.imag(new_state_c)], 1) # [batch_sz, 2*num_units] R
        # outside network (last dense layer) is ready for 2*num_units -> num_out
        output = new_state
        # print("cell.call output:", output.shape, output.dtype)
        # print("cell.call new_state:", new_state.shape, new_state.dtype)

        return output, new_state
music.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def create_network():
    dp = tflearn.data_preprocessing.DataPreprocessing()
    dp.add_featurewise_zero_center()
    dp.add_featurewise_stdnorm()
    #dp.add_samplewise_zero_center()
    #dp.add_samplewise_stdnorm()

    network = tflearn.input_data(shape=[None, chunk_size])#, data_preprocessing=dp)

    # input is a real signal
    network = tf.complex(network, 0.0)

    # fft the input
    input_fft = tf.fft(network)
    input_orig_fft = input_fft
    input_fft = tf.stack([tf.real(input_fft), tf.imag(input_fft)], axis=2)
    fft_size = int(input_fft.shape[1])
    network = input_fft
    print("fft shape: " + str(input_fft.get_shape()))

    omg = fft_size

    nn_reg = None

    mask = network

    mask = tflearn.layers.fully_connected(mask, omg*2, activation="tanh", regularizer=nn_reg)
    mask = tflearn.layers.normalization.batch_normalization(mask)

    mask = tflearn.layers.fully_connected(mask, omg, activation="tanh", regularizer=nn_reg)
    mask = tflearn.layers.normalization.batch_normalization(mask)

    mask = tflearn.layers.fully_connected(mask, omg/2, activation="tanh", regularizer=nn_reg)
    mask = tflearn.layers.normalization.batch_normalization(mask)

    #mask = tflearn.layers.fully_connected(mask, omg/4, activation="tanh")
    mask = tflearn.reshape(mask, [-1, 1, omg/2])
    mask = tflearn.layers.recurrent.lstm(mask, omg/4)

    mask = tflearn.layers.fully_connected(mask, omg/2, activation="tanh", regularizer=nn_reg)
    mask = tflearn.layers.normalization.batch_normalization(mask)

    mask = tflearn.layers.fully_connected(mask, omg, activation="tanh", regularizer=nn_reg)
    mask = tflearn.layers.normalization.batch_normalization(mask)

    mask = tflearn.layers.fully_connected(mask, omg*2, activation="tanh", regularizer=nn_reg)
    mask = tflearn.layers.normalization.batch_normalization(mask)

    mask = tflearn.layers.fully_connected(mask, omg, activation="sigmoid", regularizer=nn_reg)

    real = tf.multiply(tf.real(input_orig_fft), mask)
    imag = tf.multiply(tf.imag(input_orig_fft), mask)    
    network = tf.real(tf.ifft(tf.complex(real, imag)))

    print("final shape: " + str(network.get_shape()))

    network = tflearn.regression(network, optimizer="adam", learning_rate=learning_rate, loss="mean_square")

    return network


问题


面经


文章

微信
公众号

扫码关注公众号