python类moving_average_variables()的实例源码

resnet.py 文件源码 项目:bone-age 作者: radinformatics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, checkpoint_path):
        layers = 50
        num_blocks = [3, 4, 6, 3]
        self.inference = lambda images, is_train : inference(images, 
                                                   is_training=is_train, 
                                                   num_classes=NUM_AGES*2,
                                                   num_blocks=num_blocks, 
                                                   bottleneck=True)

        self.x = tf.placeholder(tf.uint8, shape=(256,256,3), name='input_image')
        self.crops = fixed_crops(self.x)
        self.logits = self.inference(self.crops, is_train=False)
        self.pred = tf.nn.softmax(self.logits, name='prediction')

        # Restore saved weights
        restore_variables = tf.trainable_variables() \
                + tf.moving_average_variables()
        self.saver = tf.train.Saver(restore_variables)
        self.sess = tf.Session()
        self.saver.restore(self.sess, checkpoint_path)

        #self.sess.run(tf.initialize_variables([var for var \
        #        in tf.all_variables() if var not in restore_variables]))
base_optimizer.py 文件源码 项目:Sing_Par 作者: wanghm92 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def variables_to_restore(self, moving_avg_variables=None):
    """"""

    name_map = {}
    if moving_avg_variables is None:
      moving_avg_variables = tf.trainable_variables()
      moving_avg_variables += tf.moving_average_variables()
    # Remove duplicates
    moving_avg_variables = set(moving_avg_variables)
    # Collect all the variables with moving average,
    for v in moving_avg_variables:
      name_map[self.average_name(v)] = v
    # Make sure we restore variables without moving average as well.
    for v in list(set(tf.all_variables()) - moving_avg_variables):
      if v.op.name not in name_map:
        name_map[v.op.name] = v
    return name_map

  #===============================================================
base_optimizer.py 文件源码 项目:Parser-v1 作者: tdozat 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def variables_to_restore(self, moving_avg_variables=None):
    """"""

    name_map = {}
    if moving_avg_variables is None:
      moving_avg_variables = tf.trainable_variables()
      moving_avg_variables += tf.moving_average_variables()
    # Remove duplicates
    moving_avg_variables = set(moving_avg_variables)
    # Collect all the variables with moving average,
    for v in moving_avg_variables:
      name_map[self.average_name(v)] = v
    # Make sure we restore variables without moving average as well.
    for v in list(set(tf.all_variables()) - moving_avg_variables):
      if v.op.name not in name_map:
        name_map[v.op.name] = v
    return name_map

  #===============================================================
base_optimizer.py 文件源码 项目:UnstableParser 作者: tdozat 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def variables_to_restore(self, moving_avg_variables=None):
    """"""

    name_map = {}
    if moving_avg_variables is None:
      moving_avg_variables = tf.trainable_variables()
      moving_avg_variables += tf.moving_average_variables()
    # Remove duplicates
    moving_avg_variables = set(moving_avg_variables)
    # Collect all the variables with moving average,
    for v in moving_avg_variables:
      name_map[self.average_name(v)] = v
    # Make sure we restore variables without moving average as well.
    for v in list(set(tf.all_variables()) - moving_avg_variables):
      if v.op.name not in name_map:
        name_map[v.op.name] = v
    return name_map

  #===============================================================
ops_test.py 文件源码 项目:piecewisecrf 作者: Vaan5 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testCreateVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images)
      beta = variables.get_variables_by_name('beta')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:piecewisecrf 作者: Vaan5 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testCreateVariablesWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      beta = variables.get_variables_by_name('beta')[0]
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:piecewisecrf 作者: Vaan5 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=True)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:piecewisecrf 作者: Vaan5 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithoutScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=False)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:piecewisecrf 作者: Vaan5 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testMovingAverageVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testCreateVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images)
      beta = variables.get_variables_by_name('beta')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testCreateVariablesWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      beta = variables.get_variables_by_name('beta')[0]
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=True)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithoutScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=False)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:terngrad 作者: wenwei202 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testMovingAverageVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
learning_distributed.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _setup_model_loss(self, inputs, labels, validation_inputs, validation_labels, is_chief, task_id, num_workers, is_training, scope, initial_lr=0.1, reuse=None, global_step=None, num_replicas_to_aggregate=-1):
        validation_metric = []
        validation_metric_tmp = [[] for _, _ in self.validation_metrics_def]
        self.learning_rate = tf.placeholder(
            tf.float32, shape=[], name="learning_rate_placeholder")

        losses, total_loss = self._tower_loss(
            scope, self.model, inputs, labels, is_training, reuse, is_classification=True)
        val_total_loss = self._tower_loss(
            scope, self.model, validation_inputs, validation_labels, False, True, is_classification=True)
        for i, (_, metric_function) in enumerate(self.validation_metrics_def):
            metric_score = metric_function(
                validation_labels, tf.argmax(self.validation_predictions, 1))
            validation_metric_tmp[i].append(metric_score)
        for i, (_, _) in enumerate(self.validation_metrics_def):
            validation_metric.append(sum(validation_metric_tmp[i]))
        validation_metric.append(val_total_loss)

        if is_chief:
            loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
            loss_averages_op = loss_averages.apply(losses + [total_loss])

            with tf.control_dependencies([loss_averages_op]):
                total_loss = tf.identity(total_loss)

        exp_moving_averager = tf.train.ExponentialMovingAverage(
            self.cnf.get('mv_decay', 0.9), global_step)

        variables_to_average = (
            tf.trainable_variables() + tf.moving_average_variables())

        # Create synchronous replica optimizer.
        learning_rate = self.lr_policy.batch_update(initial_lr, 0)
        opt = self._optimizer(learning_rate, optname=self.cnf.get(
            'optname', 'momentum'), **self.cnf.get('opt_kwargs', {'decay': 0.9}))
        opt = tf.train.SyncReplicasOptimizer(opt, replicas_to_aggregate=num_replicas_to_aggregate,
                                             total_num_replicas=num_workers, variable_averages=exp_moving_averager, variables_to_average=variables_to_average)
        return total_loss, opt, validation_metric
ops_test.py 文件源码 项目:the-neural-perspective 作者: GokuMohandas 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testCreateVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images)
      beta = variables.get_variables_by_name('beta')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:the-neural-perspective 作者: GokuMohandas 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testCreateVariablesWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      beta = variables.get_variables_by_name('beta')[0]
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:the-neural-perspective 作者: GokuMohandas 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=True)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:the-neural-perspective 作者: GokuMohandas 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithoutScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=False)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:the-neural-perspective 作者: GokuMohandas 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testMovingAverageVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testCreateVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images)
      beta = variables.get_variables_by_name('beta')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testCreateVariablesWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      beta = variables.get_variables_by_name('beta')[0]
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=True)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithoutScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=False)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:InceptionV3_TensorFlow 作者: MasazI 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testMovingAverageVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:darkskies-challenge 作者: LiberiFatali 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testCreateVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images)
      beta = variables.get_variables_by_name('beta')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:darkskies-challenge 作者: LiberiFatali 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testCreateVariablesWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      beta = variables.get_variables_by_name('beta')[0]
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(beta.op.name, 'BatchNorm/beta')
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:darkskies-challenge 作者: LiberiFatali 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=True)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')[0]
      self.assertEquals(gamma.op.name, 'BatchNorm/gamma')
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:darkskies-challenge 作者: LiberiFatali 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testCreateVariablesWithoutCenterWithoutScale(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, center=False, scale=False)
      beta = variables.get_variables_by_name('beta')
      self.assertEquals(beta, [])
      gamma = variables.get_variables_by_name('gamma')
      self.assertEquals(gamma, [])
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')
ops_test.py 文件源码 项目:darkskies-challenge 作者: LiberiFatali 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testMovingAverageVariables(self):
    height, width = 3, 3
    with self.test_session():
      images = tf.random_uniform((5, height, width, 3), seed=1)
      ops.batch_norm(images, scale=True)
      moving_mean = tf.moving_average_variables()[0]
      moving_variance = tf.moving_average_variables()[1]
      self.assertEquals(moving_mean.op.name, 'BatchNorm/moving_mean')
      self.assertEquals(moving_variance.op.name, 'BatchNorm/moving_variance')


问题


面经


文章

微信
公众号

扫码关注公众号