def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients accross clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
python类Optimizer()的实例源码
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones,
optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def swapping_saver(self, var_list=None, name='swapping_saver', **kwargs):
"""Create a saver swapping moving averages and variables.
You should use this saver during training. It will save the moving averages
of the trained parameters under the original parameter names. For
evaluations or inference you should use a regular saver and it will
automatically use the moving averages for the trained variable.
You must call this function after all variables have been created and after
you have called Optimizer.minimize().
Args:
var_list: List of variables to save, as per `Saver()`.
If set to None, will save all the variables that have been
created before this call.
name: The name of the saver.
**kwargs: Keyword arguments of `Saver()`.
Returns:
A `tf.train.Saver` object.
Raises:
RuntimeError: If apply_gradients or minimize has not been called before.
"""
if self._variable_map is None:
raise RuntimeError('Must call apply_gradients or minimize before '
'creating the swapping_saver')
if var_list is None:
var_list = tf.global_variables()
if not isinstance(var_list, dict):
var_list = saver.BaseSaverBuilder.OpListToDict(var_list)
# Now swap variables and moving averages
swapped_var_list = {}
for k, v in six.iteritems(var_list):
v_swap = self._variable_map.get(v.op.name, None)
if v_swap:
swapped_var_list[k] = v_swap
else:
swapped_var_list[k] = v
# Build the swapping saver.
return saver.Saver(swapped_var_list, name=name, **kwargs)
def optimize_clones(clones, optimizer, regularization_losses=None, **kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(optimizer, clone,
num_clones,
regularization_losses,
**kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients accross clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients accross clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
model_deploy.py 文件源码
项目:Embarrassingly-Parallel-Image-Classification
作者: Azure
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients accross clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients accross clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients accross clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars
def optimize_clones(clones, optimizer,
regularization_losses=None,
**kwargs):
"""Compute clone losses and gradients for the given list of `Clones`.
Note: The regularization_losses are added to the first clone losses.
Args:
clones: List of `Clones` created by `create_clones()`.
optimizer: An `Optimizer` object.
regularization_losses: Optional list of regularization losses. If None it
will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to
exclude them.
**kwargs: Optional list of keyword arguments to pass to `compute_gradients`.
Returns:
A tuple (total_loss, grads_and_vars).
- total_loss: A Tensor containing the average of the clone losses including
the regularization loss.
- grads_and_vars: A List of tuples (gradient, variable) containing the sum
of the gradients for each variable.
"""
grads_and_vars = []
clones_losses = []
num_clones = len(clones)
if regularization_losses is None:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
for clone in clones:
with tf.name_scope(clone.scope):
clone_loss, clone_grad = _optimize_clone(
optimizer, clone, num_clones, regularization_losses, **kwargs)
if clone_loss is not None:
clones_losses.append(clone_loss)
grads_and_vars.append(clone_grad)
# Only use regularization_losses for the first clone
regularization_losses = None
# Compute the total_loss summing all the clones_losses.
total_loss = tf.add_n(clones_losses, name='total_loss')
# Sum the gradients across clones.
grads_and_vars = _sum_clones_gradients(grads_and_vars)
return total_loss, grads_and_vars