def _train_fprop(self, state_below):
idx, val = state_below
X = tf.SparseTensor(tf.cast(idx, 'int64'), val, shape=[self.batchsize, self.prev_dim])
X_order = tf.sparse_reorder(X)
XW = tf.sparse_tensor_dense_matmul(X_order, self.W, adjoint_a=False, adjoint_b=False)
return tf.add(XW, self.b)
python类sparse_tensor_dense_matmul()的实例源码
def linear_representation_graph(tf_features, n_components, n_features, node_name_ending):
# Create variable nodes
tf_linear_weights = tf.Variable(tf.random_normal([n_features, n_components], stddev=.5),
name='linear_weights_%s' % node_name_ending)
tf_repr = tf.sparse_tensor_dense_matmul(tf_features, tf_linear_weights)
# Return repr layer and variables
return tf_repr, [tf_linear_weights]
def calc_log_loss(self, Pairwise, Question, Answer, Review, TermtoTermR, TermtoTermP, Question_I, Answer_I, Review_I):
#print 'Doing for item %d'%(i)
shape1 = tf.shape(Pairwise)
shape2 = tf.shape(Answer)
nq = shape1[0]
nr = shape1[1]
na = shape2[1]
pairwise = tf.reshape(Pairwise, [-1, self.PairwiseDim])
pairwise = tf.reshape(tf.matmul(pairwise, self.theta), [nq, nr])
termTotermR = tf.sparse_reshape(TermtoTermR, [-1, self.V])
termTotermR = tf.reshape(tf.sparse_tensor_dense_matmul(termTotermR, self.RelvPar), [nq, nr])
QProj = tf.sparse_tensor_dense_matmul(Question_I, self.A)
RProjR = tf.sparse_tensor_dense_matmul(Review_I, self.B)
BilinearR = tf.matmul(QProj, tf.transpose(RProjR))
Relevance = tf.nn.softmax(pairwise + termTotermR + BilinearR)
termTotermP = tf.sparse_reshape(TermtoTermP, [-1, self.V])
termTotermP = tf.reshape(tf.sparse_tensor_dense_matmul(termTotermP, self.PredPar), [nq, na, nr])
AProj = tf.sparse_tensor_dense_matmul(tf.sparse_reshape(Answer_I, [-1, self.V]), self.X)
RProjP = tf.sparse_tensor_dense_matmul(Review_I, self.Y)
BilinearP = tf.reshape(tf.matmul(AProj, tf.transpose(RProjP)), [nq, na, nr])
Prediction = BilinearP + termTotermP
Prediction = tf.expand_dims(Prediction[:,0,:], 1) - Prediction
Prediction = Prediction[:,1:,:]
Prediction = tf.sigmoid(Prediction)
MoE = tf.reduce_sum(tf.multiply(Prediction, tf.expand_dims(Relevance, axis = 1)), axis = 2)
accuracy_count = tf.cast(tf.shape(tf.where(MoE > 0.5))[0], tf.float64)
count = nq * na
log_likelihood = tf.reduce_sum(tf.log(MoE))
R1 = tf.reduce_sum(tf.square(self.A)) + tf.reduce_sum(tf.square(self.B))
R2 = tf.reduce_sum(tf.square(self.X)) + tf.reduce_sum(tf.square(self.Y))
log_likelihood -= self.Lambda * (R1 + R2)
return -1*log_likelihood, MoE, Relevance
def matmul(a, b, benchmark=True, name='mul'): # TODO maybe put inside dot
"""
Interface function for matmul that works also with sparse tensors
:param a:
:param b:
:param benchmark:
:param name:
:return:
"""
a_is_sparse = isinstance(a, tf.SparseTensor)
with tf.name_scope(name):
if a_is_sparse:
mul = wsr(tf.matmul(tf.sparse_tensor_to_dense(a, default_value=0.), b))
if benchmark:
mul_ops = [wsr(tf.sparse_tensor_dense_matmul(a, b)),
mul, # others ?
# wsr(tf.nn.embedding_lookup_sparse()) # I couldn't figure out how this works......
]
def _avg_exe_times(op, repetitions):
from time import time
ex_times = []
for _ in range(repetitions):
st = time()
op.eval()
ex_times.append(time() - st)
return np.mean(ex_times[1:]), np.max(ex_times), np.min(ex_times)
with tf.Session(config=CONFIG_GPU_GROWTH).as_default():
tf.global_variables_initializer().run() # TODO here should only initialize necessary variable
# (downstream in the computation graph)
statistics = {op: _avg_exe_times(op, repetitions=4) for op in mul_ops}
[print(k, v) for k, v in statistics.items()]
mul = sorted(statistics.items(), key=lambda v: v[1][0])[0][0] # returns best one w.r.t. avg exe time
print(mul, 'selected')
else:
mul = wsr(tf.matmul(a, b))
return mul
# Define a context manager to suppress stdout and stderr.
def affine(input_tensor, output_size, bias=True, bias_start=0.0,
input_size=None, scope="affine", sparse_input=False):
"""Add an affine transformation of `input_tensor` to the current graph.
Note: This op is loosely based on tensorflow.python.ops.rnn_cell.linear.
An affine transformation is a linear transformation with a shift,
`t = tf.matmul(input_tensor, W) + b`.
Parameters
----------
input_tensor : tensorflow Tensor object, rank 2
Input tensor to be transformed.
output_size : int
The output will be size [a, output_size] where `input_tensor` has
shape [a, b].
bias : bool, optional
If True, apply a bias to the transformation. If False, only a linear
transformation is applied (i.e., `t = tf.matmul(W, input_tensor)`).
bias_start : float, optional
The initial value for the bias `b`.
input_size : int, optional
Second dimension of the rank 2 input tensor. Required for sparse input
tensors.
sparse_input : bool, optional
Set to True if `input_tensor` is sparse.
Returns
-------
t : tensorflow tensor object
The affine transformation of `input_tensor`.
"""
# The input size is needed for sparse matrices.
if input_size is None:
input_size = input_tensor.get_shape().as_list()[1]
with tf.variable_scope(scope):
W_0 = tf.get_variable(
"weights0",
[input_size, output_size])
# If the input is sparse, then use a special matmul routine.
matmul = tf.sparse_tensor_dense_matmul if sparse_input else tf.matmul
t = matmul(input_tensor, W_0)
if bias:
b_0 = tf.get_variable(
"bias0",
[output_size],
initializer=tf.constant_initializer(bias_start))
t = tf.add(t, b_0)
return t
def __init__(self, field_sizes=None, embed_size=10, layer_sizes=None, layer_acts=None, drop_out=None,
embed_l2=None, layer_l2=None, init_path=None, opt_algo='gd', learning_rate=1e-2, random_seed=None):
Model.__init__(self)
init_vars = []
num_inputs = len(field_sizes)
for i in range(num_inputs):
init_vars.append(('embed_%d' % i, [field_sizes[i], embed_size], 'xavier', dtype))
node_in = num_inputs * embed_size
for i in range(len(layer_sizes)):
init_vars.append(('w%d' % i, [node_in, layer_sizes[i]], 'xavier', dtype))
init_vars.append(('b%d' % i, [layer_sizes[i]], 'zero', dtype))
node_in = layer_sizes[i]
self.graph = tf.Graph()
with self.graph.as_default():
if random_seed is not None:
tf.set_random_seed(random_seed)
self.X = [tf.sparse_placeholder(dtype) for i in range(num_inputs)]
self.y = tf.placeholder(dtype)
self.keep_prob_train = 1 - np.array(drop_out)
self.keep_prob_test = np.ones_like(drop_out)
self.layer_keeps = tf.placeholder(dtype)
self.vars = utils.init_var_map(init_vars, init_path)
w0 = [self.vars['embed_%d' % i] for i in range(num_inputs)]
xw = tf.concat([tf.sparse_tensor_dense_matmul(self.X[i], w0[i]) for i in range(num_inputs)], 1)
l = xw
for i in range(len(layer_sizes)):
wi = self.vars['w%d' % i]
bi = self.vars['b%d' % i]
print(l.shape, wi.shape, bi.shape)
l = tf.nn.dropout(
utils.activate(
tf.matmul(l, wi) + bi,
layer_acts[i]),
self.layer_keeps[i])
l = tf.squeeze(l)
self.y_prob = tf.sigmoid(l)
self.loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=l, labels=self.y))
if layer_l2 is not None:
self.loss += embed_l2 * tf.nn.l2_loss(xw)
for i in range(len(layer_sizes)):
wi = self.vars['w%d' % i]
self.loss += layer_l2[i] * tf.nn.l2_loss(wi)
self.optimizer = utils.get_optimizer(opt_algo, learning_rate, self.loss)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
tf.global_variables_initializer().run(session=self.sess)
def __init__(self, field_sizes=None, embed_size=10, filter_sizes=None, layer_acts=None, drop_out=None,
init_path=None, opt_algo='gd', learning_rate=1e-2, random_seed=None):
Model.__init__(self)
init_vars = []
num_inputs = len(field_sizes)
for i in range(num_inputs):
init_vars.append(('embed_%d' % i, [field_sizes[i], embed_size], 'xavier', dtype))
init_vars.append(('f1', [embed_size, filter_sizes[0], 1, 2], 'xavier', dtype))
init_vars.append(('f2', [embed_size, filter_sizes[1], 2, 2], 'xavier', dtype))
init_vars.append(('w1', [2 * 3 * embed_size, 1], 'xavier', dtype))
init_vars.append(('b1', [1], 'zero', dtype))
self.graph = tf.Graph()
with self.graph.as_default():
if random_seed is not None:
tf.set_random_seed(random_seed)
self.X = [tf.sparse_placeholder(dtype) for i in range(num_inputs)]
self.y = tf.placeholder(dtype)
self.keep_prob_train = 1 - np.array(drop_out)
self.keep_prob_test = np.ones_like(drop_out)
self.layer_keeps = tf.placeholder(dtype)
self.vars = utils.init_var_map(init_vars, init_path)
w0 = [self.vars['embed_%d' % i] for i in range(num_inputs)]
xw = tf.concat([tf.sparse_tensor_dense_matmul(self.X[i], w0[i]) for i in range(num_inputs)], 1)
l = xw
l = tf.transpose(tf.reshape(l, [-1, num_inputs, embed_size, 1]), [0, 2, 1, 3])
f1 = self.vars['f1']
l = tf.nn.conv2d(l, f1, [1, 1, 1, 1], 'SAME')
l = tf.transpose(
utils.max_pool_4d(
tf.transpose(l, [0, 1, 3, 2]),
int(num_inputs / 2)),
[0, 1, 3, 2])
f2 = self.vars['f2']
l = tf.nn.conv2d(l, f2, [1, 1, 1, 1], 'SAME')
l = tf.transpose(
utils.max_pool_4d(
tf.transpose(l, [0, 1, 3, 2]), 3),
[0, 1, 3, 2])
l = tf.nn.dropout(
utils.activate(
tf.reshape(l, [-1, embed_size * 3 * 2]),
layer_acts[0]),
self.layer_keeps[0])
w1 = self.vars['w1']
b1 = self.vars['b1']
l = tf.matmul(l, w1) + b1
l = tf.squeeze(l)
self.y_prob = tf.sigmoid(l)
self.loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=l, labels=self.y))
self.optimizer = utils.get_optimizer(opt_algo, learning_rate, self.loss)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
tf.global_variables_initializer().run(session=self.sess)