python类get_collection_ref()的实例源码

inference.py 文件源码 项目:youtube 作者: taufikxu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size, top_k):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:
    video_id_batch, video_batch, num_frames_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    num_frames_tensor = tf.get_collection("num_frames")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("VideoId,LabelConfidencePairs\n")

    try:
      while not coord.should_stop():
          video_id_batch_val, video_batch_val,num_frames_batch_val = sess.run([video_id_batch, video_batch, num_frames_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: video_batch_val, num_frames_tensor: num_frames_batch_val})
          now = time.time()
          num_examples_processed += len(video_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(video_id_batch_val, predictions_val, top_k):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
inference.py 文件源码 项目:google_ml_challenge 作者: SSUHan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:
    image_id_batch, image_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("Id,Category\n")

    try:
      while not coord.should_stop():
          image_id_batch_val, image_batch_val  = sess.run([image_id_batch, image_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: image_batch_val})
          now = time.time()
          num_examples_processed += len(image_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(image_id_batch_val, predictions_val):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
inference.py 文件源码 项目:google_ml_challenge 作者: SSUHan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:
    image_id_batch, image_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("Id,Category\n")

    try:
      while not coord.should_stop():
          image_id_batch_val, image_batch_val  = sess.run([image_id_batch, image_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: image_batch_val})
          now = time.time()
          num_examples_processed += len(image_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(image_id_batch_val, predictions_val):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
inference.py 文件源码 项目:kaggle-youtube-8m 作者: liufuyang 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size, top_k):
  with tf.Session() as sess, gfile.Open(out_file_location, "w+") as out_file:
    video_id_batch, video_batch, num_frames_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    num_frames_tensor = tf.get_collection("num_frames")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("VideoId,LabelConfidencePairs\n")

    try:
      while not coord.should_stop():
          video_id_batch_val, video_batch_val,num_frames_batch_val = sess.run([video_id_batch, video_batch, num_frames_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: video_batch_val, num_frames_tensor: num_frames_batch_val})
          now = time.time()
          num_examples_processed += len(video_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(video_id_batch_val, predictions_val, top_k):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
inference.py 文件源码 项目:tutorial_mnist 作者: machine-learning-challenge 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:
    image_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("Id,Category\n")

    try:
      line_id = 1
      while not coord.should_stop():
          image_batch_val = sess.run(image_batch)
          predictions_val = sess.run(predictions_tensor, feed_dict={input_tensor: image_batch_val})
          now = time.time()
          num_examples_processed += len(image_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(predictions_val):
            out_file.write("%d,%s" % (line_id, line))
            line_id += 1
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
inference.py 文件源码 项目:u8m_test 作者: hxkk 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size, top_k):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:
    video_id_batch, video_batch, num_frames_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    num_frames_tensor = tf.get_collection("num_frames")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("VideoId,LabelConfidencePairs\n")

    try:
      while not coord.should_stop():
          video_id_batch_val, video_batch_val,num_frames_batch_val = sess.run([video_id_batch, video_batch, num_frames_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: video_batch_val, num_frames_tensor: num_frames_batch_val})
          now = time.time()
          num_examples_processed += len(video_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(video_id_batch_val, predictions_val, top_k):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
tbcnn.py 文件源码 项目:tensorflow-tbcnn 作者: Aetf 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def do_evaluation():
    # load data early to get node_type_num
    ds = data.load_dataset('data/statements')
    hyper.node_type_num = len(ds.word2int)

    (compiler, _, _, _, raw_accuracy, batch_size_op) = build_model()

    # restorer for embedding matrix
    embedding_path = tf.train.latest_checkpoint(hyper.embedding_dir)
    if embedding_path is None:
        raise ValueError('Path to embedding checkpoint is incorrect: ' + hyper.embedding_dir)

    # restorer for other variables
    checkpoint_path = tf.train.latest_checkpoint(hyper.train_dir)
    if checkpoint_path is None:
        raise ValueError('Path to tbcnn checkpoint is incorrect: ' + hyper.train_dir)

    restored_vars = tf.get_collection_ref('restored')
    restored_vars.append(param.get('We'))
    restored_vars.extend(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
    embeddingRestorer = tf.train.Saver({'embedding/We': param.get('We')})
    restorer = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))

    # train loop
    total_size, test_gen = ds.get_split('test')
    test_set = compiler.build_loom_inputs(test_gen)
    with tf.Session() as sess:
        # Restore embedding matrix first
        embeddingRestorer.restore(sess, embedding_path)
        # Restore others
        restorer.restore(sess, checkpoint_path)
        # Initialize other variables
        gvariables = [v for v in tf.global_variables() if v not in tf.get_collection('restored')]
        sess.run(tf.variables_initializer(gvariables))

        num_epochs = 1 if not hyper.warm_up else 3
        for shuffled in td.epochs(test_set, num_epochs):
            logger.info('')
            logger.info('======================= Evaluation ====================================')
            accumulated_accuracy = 0.
            start_time = default_timer()
            for step, batch in enumerate(td.group_by_batches(shuffled, hyper.batch_size), 1):
                feed_dict = {compiler.loom_input_tensor: batch}
                accuracy_value, actual_bsize = sess.run([raw_accuracy, batch_size_op], feed_dict)
                accumulated_accuracy += accuracy_value * actual_bsize
                logger.info('evaluation in progress: running accuracy = %.2f, processed = %d / %d',
                            accuracy_value, (step - 1) * hyper.batch_size + actual_bsize, total_size)
            duration = default_timer() - start_time
            total_accuracy = accumulated_accuracy / total_size
            logger.info('evaluation accumulated accuracy = %.2f%% (%.1f samples/sec; %.2f seconds)',
                        total_accuracy * 100, total_size / duration, duration)
            logger.info('======================= Evaluation End =================================')
            logger.info('')
inference.py 文件源码 项目:youtube-8m 作者: Tsingularity 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size, top_k):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:

    video_id_batch, video_batch, num_frames_batch = get_input_data_tensors(reader, data_pattern, batch_size)

    if FLAGS.checkpoint_name == "":
      latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    else:
      latest_checkpoint = FLAGS.train_dir+"model.ckpt-"+FLAGS.checkpoint_name
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    num_frames_tensor = tf.get_collection("num_frames")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("VideoId,LabelConfidencePairs\n")

    try:
      while not coord.should_stop():
          video_id_batch_val, video_batch_val,num_frames_batch_val = sess.run([video_id_batch, video_batch, num_frames_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: video_batch_val, num_frames_tensor: num_frames_batch_val})
          now = time.time()
          num_examples_processed += len(video_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(video_id_batch_val, predictions_val, top_k):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
inference.py 文件源码 项目:youtube-8m 作者: Tsingularity 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def inference(reader, train_dir, data_pattern, out_file_location, batch_size, top_k):
  with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess, gfile.Open(out_file_location, "w+") as out_file:
    video_id_batch, video_batch, num_frames_batch = get_input_data_tensors(reader, data_pattern, batch_size)
    latest_checkpoint = tf.train.latest_checkpoint(train_dir)
    if latest_checkpoint is None:
      raise Exception("unable to find a checkpoint at location: %s" % train_dir)
    else:
      meta_graph_location = latest_checkpoint + ".meta"
      logging.info("loading meta-graph: " + meta_graph_location)
    saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
    logging.info("restoring variables from " + latest_checkpoint)
    saver.restore(sess, latest_checkpoint)
    input_tensor = tf.get_collection("input_batch_raw")[0]
    num_frames_tensor = tf.get_collection("num_frames")[0]
    predictions_tensor = tf.get_collection("predictions")[0]

    # Workaround for num_epochs issue.
    def set_up_init_ops(variables):
      init_op_list = []
      for variable in list(variables):
        if "train_input" in variable.name:
          init_op_list.append(tf.assign(variable, 1))
          variables.remove(variable)
      init_op_list.append(tf.variables_initializer(variables))
      return init_op_list

    sess.run(set_up_init_ops(tf.get_collection_ref(
        tf.GraphKeys.LOCAL_VARIABLES)))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    num_examples_processed = 0
    start_time = time.time()
    out_file.write("VideoId,LabelConfidencePairs\n")

    try:
      while not coord.should_stop():
          video_id_batch_val, video_batch_val,num_frames_batch_val = sess.run([video_id_batch, video_batch, num_frames_batch])
          predictions_val, = sess.run([predictions_tensor], feed_dict={input_tensor: video_batch_val, num_frames_tensor: num_frames_batch_val})
          now = time.time()
          num_examples_processed += len(video_batch_val)
          num_classes = predictions_val.shape[1]
          logging.info("num examples processed: " + str(num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now-start_time))
          for line in format_lines(video_id_batch_val, predictions_val, top_k):
            out_file.write(line)
          out_file.flush()


    except tf.errors.OutOfRangeError:
        logging.info('Done with inference. The output file was written to ' + out_file_location)
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()


问题


面经


文章

微信
公众号

扫码关注公众号