python类initialize_local_variables()的实例源码

metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def testMultipleBatchesOfSizeOne(self):
    with self.test_session() as sess:
      # Create the queue that populates the predictions.
      preds_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, preds_queue, [10, 8, 6])
      _enqueue_vector(sess, preds_queue, [-4, 3, -1])
      predictions = preds_queue.dequeue()

      # Create the queue that populates the labels.
      labels_queue = tf.FIFOQueue(2, dtypes=tf.float32, shapes=(1, 3))
      _enqueue_vector(sess, labels_queue, [1, 3, 2])
      _enqueue_vector(sess, labels_queue, [2, 4, 6])
      labels = labels_queue.dequeue()

      error, update_op = metrics.streaming_mean_squared_error(
          predictions, labels)

      sess.run(tf.initialize_local_variables())
      sess.run(update_op)
      self.assertAlmostEqual(208.0 / 6, sess.run(update_op), 5)

      self.assertAlmostEqual(208.0 / 6, error.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 75 收藏 0 点赞 0 评论 0
def testValueTensorIsIdempotent(self):
    predictions = tf.random_normal((10, 3), seed=1)
    labels = tf.random_normal((10, 3), seed=2)
    error, update_op = metrics.streaming_root_mean_squared_error(
        predictions, labels)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())

      # Run several updates.
      for _ in range(10):
        sess.run(update_op)

      # Then verify idempotency.
      initial_error = error.eval()
      for _ in range(10):
        self.assertEqual(initial_error, error.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def testValueTensorIsIdempotent(self):
    labels = tf.random_normal((10, 3), seed=2)
    predictions = labels * 0.5 + tf.random_normal((10, 3), seed=1) * 0.5
    cov, update_op = metrics.streaming_covariance(predictions, labels)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())

      # Run several updates.
      for _ in range(10):
        sess.run(update_op)

      # Then verify idempotency.
      initial_cov = cov.eval()
      for _ in range(10):
        self.assertEqual(initial_cov, cov.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def testValueTensorIsIdempotent(self):
    labels = tf.random_normal((10, 3), seed=2)
    predictions = labels * 0.5 + tf.random_normal((10, 3), seed=1) * 0.5
    pearson_r, update_op = metrics.streaming_pearson_correlation(predictions,
                                                                 labels)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())

      # Run several updates.
      for _ in range(10):
        sess.run(update_op)

      # Then verify idempotency.
      initial_r = pearson_r.eval()
      for _ in range(10):
        self.assertEqual(initial_r, pearson_r.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testSingleUpdateWithErrorAndWeights(self):
    with self.test_session() as sess:
      predictions = np.array([2, 4, 6, 8])
      labels = np.array([1, 3, 2, 7])
      weights = np.array([0, 1, 3, 1])
      predictions_t = tf.constant(predictions, shape=(1, 4), dtype=tf.float32)
      labels_t = tf.constant(labels, shape=(1, 4), dtype=tf.float32)
      weights_t = tf.constant(weights, shape=(1, 4), dtype=tf.float32)

      pearson_r, update_op = metrics.streaming_pearson_correlation(
          predictions_t, labels_t, weights=weights_t)

      p, l = _reweight(predictions, labels, weights)
      cmat = np.cov(p, l)
      expected_r = cmat[0, 1] / np.sqrt(cmat[0, 0] * cmat[1, 1])
      sess.run(tf.initialize_local_variables())
      self.assertAlmostEqual(expected_r, sess.run(update_op))
      self.assertAlmostEqual(expected_r, pearson_r.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testValueTensorIsIdempotent(self):
    predictions = tf.random_normal((10, 3), seed=1)
    labels = tf.random_normal((10, 3), seed=2)
    error, update_op = metrics.streaming_mean_cosine_distance(
        predictions, labels, dim=1)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())

      # Run several updates.
      for _ in range(10):
        sess.run(update_op)

      # Then verify idempotency.
      initial_error = error.eval()
      for _ in range(10):
        self.assertEqual(initial_error, error.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def testSingleUpdateWithError1(self):
    np_labels = np.matrix(('1 0 0;'
                           '0 0 1;'
                           '0 1 0'))
    np_predictions = np.matrix(('1 0 0;'
                                '0 0 -1;'
                                '1 0 0'))

    predictions = tf.constant(np_predictions, shape=(3, 1, 3), dtype=tf.float32)
    labels = tf.constant(np_labels, shape=(3, 1, 3), dtype=tf.float32)

    error, update_op = metrics.streaming_mean_cosine_distance(
        predictions, labels, dim=2)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())
      self.assertAlmostEqual(1, sess.run(update_op), 5)
      self.assertAlmostEqual(1, error.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testSingleUpdateWithError2(self):
    np_predictions = np.matrix((
        '0.819031913261206 0.567041924552012 0.087465312324590;'
        '-0.665139432070255 -0.739487441769973 -0.103671883216994;'
        '0.707106781186548 -0.707106781186548 0'))
    np_labels = np.matrix((
        '0.819031913261206 0.567041924552012 0.087465312324590;'
        '0.665139432070255 0.739487441769973 0.103671883216994;'
        '0.707106781186548 0.707106781186548 0'))

    predictions = tf.constant(np_predictions, shape=(3, 1, 3), dtype=tf.float32)
    labels = tf.constant(np_labels, shape=(3, 1, 3), dtype=tf.float32)
    error, update_op = metrics.streaming_mean_cosine_distance(
        predictions, labels, dim=2)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())
      self.assertAlmostEqual(1.0, sess.run(update_op), 5)
      self.assertAlmostEqual(1.0, error.eval(), 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def testSingleUpdateWithErrorAndWeights1(self):
    np_predictions = np.matrix(('1 0 0;'
                                '0 0 -1;'
                                '1 0 0'))
    np_labels = np.matrix(('1 0 0;'
                           '0 0 1;'
                           '0 1 0'))

    predictions = tf.constant(np_predictions, shape=(3, 1, 3), dtype=tf.float32)
    labels = tf.constant(np_labels, shape=(3, 1, 3), dtype=tf.float32)
    weights = tf.constant([1, 0, 0], shape=(3, 1, 1), dtype=tf.float32)

    error, update_op = metrics.streaming_mean_cosine_distance(
        predictions, labels, dim=2, weights=weights)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())
      self.assertEqual(0, sess.run(update_op))
      self.assertEqual(0, error.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 128 收藏 0 点赞 0 评论 0
def testSingleUpdateWithErrorAndWeights2(self):
    np_predictions = np.matrix(('1 0 0;'
                                '0 0 -1;'
                                '1 0 0'))
    np_labels = np.matrix(('1 0 0;'
                           '0 0 1;'
                           '0 1 0'))

    predictions = tf.constant(np_predictions, shape=(3, 1, 3), dtype=tf.float32)
    labels = tf.constant(np_labels, shape=(3, 1, 3), dtype=tf.float32)
    weights = tf.constant([0, 1, 1], shape=(3, 1, 1), dtype=tf.float32)

    error, update_op = metrics.streaming_mean_cosine_distance(
        predictions, labels, dim=2, weights=weights)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())
      self.assertEqual(1.5, update_op.eval())
      self.assertEqual(1.5, error.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testOneUpdate(self):
    with self.test_session() as sess:
      values = tf.constant([2, 4, 6, 8], shape=(1, 4), dtype=tf.float32)

      pcnt0, update_op0 = metrics.streaming_percentage_less(
          values, 100, name='high')
      pcnt1, update_op1 = metrics.streaming_percentage_less(
          values, 7, name='medium')
      pcnt2, update_op2 = metrics.streaming_percentage_less(
          values, 1, name='low')

      sess.run(tf.initialize_local_variables())
      sess.run([update_op0, update_op1, update_op2])

      pcnt0, pcnt1, pcnt2 = sess.run([pcnt0, pcnt1, pcnt2])
      self.assertAlmostEqual(1.0, pcnt0, 5)
      self.assertAlmostEqual(0.75, pcnt1, 5)
      self.assertAlmostEqual(0.0, pcnt2, 5)
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def testValueTensorIsIdempotent(self):
    num_classes = 3
    predictions = tf.random_uniform([10], maxval=num_classes,
                                    dtype=tf.int64, seed=1)
    labels = tf.random_uniform([10], maxval=num_classes,
                               dtype=tf.int64, seed=1)
    miou, update_op = metrics.streaming_mean_iou(
        predictions, labels, num_classes=num_classes)

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())

      # Run several updates.
      for _ in range(10):
        sess.run(update_op)

      # Then verify idempotency.
      initial_miou = miou.eval()
      for _ in range(10):
        self.assertEqual(initial_miou, miou.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testUpdateOpEvalIsAccumulatedConfusionMatrix(self):
    predictions = tf.concat(0,
                            [tf.constant(0, shape=[5]),
                             tf.constant(1, shape=[5])])
    labels = tf.concat(0,
                       [tf.constant(0, shape=[3]),
                        tf.constant(1, shape=[7])])
    num_classes = 2
    with self.test_session() as sess:
      miou, update_op = metrics.streaming_mean_iou(
          predictions, labels, num_classes)
      sess.run(tf.initialize_local_variables())
      confusion_matrix = update_op.eval()
      self.assertAllEqual([[3, 2], [0, 5]], confusion_matrix)
      desired_miou = np.mean([3./5., 5./7.])
      self.assertAlmostEqual(desired_miou, miou.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def testResultsWithSomeMissing(self):
    predictions = tf.concat(0, [tf.constant(0, shape=[5]),
                                tf.constant(1, shape=[5])])
    labels = tf.concat(0, [tf.constant(0, shape=[3]),
                           tf.constant(1, shape=[7])])
    num_classes = 2
    mask = tf.concat(0, [tf.constant(False, shape=[9]),
                         tf.constant(True, shape=[1])])
    weights = tf.concat(0, [tf.constant(0, shape=[1]),
                            tf.constant(1, shape=[9])])
    with self.test_session() as sess:
      miou, update_op = metrics.streaming_mean_iou(
          predictions, labels, num_classes, ignore_mask=mask, weights=weights)
      sess.run(tf.initialize_local_variables())
      self.assertAllEqual([[2, 2], [0, 4]], update_op.eval())
      desired_miou = np.mean([2./4., 4./6.])
      self.assertAlmostEqual(desired_miou, miou.eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def testAggregateMultipleMetricsReturnsListsInOrder(self):
    predictions = tf.ones((10, 4))
    labels = tf.ones((10, 4)) * 3
    value_tensors, update_ops = metrics.aggregate_metrics(
        metrics.streaming_mean_absolute_error(
            predictions, labels),
        metrics.streaming_mean_squared_error(
            predictions, labels))
    self.assertEqual(len(value_tensors), 2)
    self.assertEqual(len(update_ops), 2)
    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())
      self.assertEqual(2, update_ops[0].eval())
      self.assertEqual(4, update_ops[1].eval())
      self.assertEqual(2, value_tensors[0].eval())
      self.assertEqual(4, value_tensors[1].eval())
metric_ops_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def testAggregateMultipleMetricsReturnsListsInOrder(self):
    predictions = tf.ones((10, 4))
    labels = tf.ones((10, 4)) * 3
    names_to_values, names_to_updates = metrics.aggregate_metric_map(
        {
            'm1': metrics.streaming_mean_absolute_error(
                predictions, labels),
            'm2': metrics.streaming_mean_squared_error(
                predictions, labels),
        })

    self.assertEqual(2, len(names_to_values))
    self.assertEqual(2, len(names_to_updates))

    with self.test_session() as sess:
      sess.run(tf.initialize_local_variables())
      self.assertEqual(2, names_to_updates['m1'].eval())
      self.assertEqual(4, names_to_updates['m2'].eval())
      self.assertEqual(2, names_to_values['m1'].eval())
      self.assertEqual(4, names_to_values['m2'].eval())
language_model_test.py 文件源码 项目:ran 作者: kentonl 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_lm(self):
        hps = get_test_hparams()

        with tf.variable_scope("model"):
            model = LM(hps)

        with self.test_session() as sess:
            tf.initialize_all_variables().run()
            tf.initialize_local_variables().run()

            loss = 1e5
            for i in range(50):
                x, y, w = simple_data_generator(hps.batch_size, hps.num_steps)
                loss, _ = sess.run([model.loss, model.train_op], {model.x: x, model.y: y, model.w: w})
                print("%d: %.3f %.3f" % (i, loss, np.exp(loss)))
                if np.isnan(loss):
                    print("NaN detected")
                    break

            self.assertLess(loss, 1.0)
wide_deep_evaluate_predict.py 文件源码 项目:provectus-final-project 作者: eds-uga 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def evaluate_and_prdict(model_dir):
    """
    Method evaluate validation dataset and predict target class for test dataset
    :param model_dir:
    :return:
    """
    m=build_estimator(model_dir=model_dir)
    results = m.evaluate(input_fn=lambda: input_fn(5000,test_data), steps=2000)
    for key in sorted(results):
        print("%s: %s" % (key, results[key]))
    y = m.predict(input_fn=lambda :input_fn_eval(5000,test_data),as_iterable=True)
    file_test= open("prediction_final.txt", "w")
    for x in y:
        file_test.write('%s' % x+"\n")
    with tf.Session() as sess:
        init = tf.group(tf.initialize_all_variables(), tf.initialize_local_variables())
        sess = tf.Session(config=tf.ConfigProto())
        sess.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess,coord=coord)
        coord.request_stop()
        coord.join(threads)
        sess.close()
benchmark_data_reading.py 文件源码 项目:DeepSEA 作者: momeara 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_input_producer(fname):
    import pdb
    pdb.set_trace()

    with tf.Session() as sess:
        strings = [b"to", b"be", b"or", b"not", b"to", b"be"]
        num_epochs = 3
        queue = tf.train.string_input_producer(
            strings, num_epochs=num_epochs, shuffle=False)
        dequeue_many = queue.dequeue_many(len(strings) * num_epochs)
        dequeue = queue.dequeue()
        tf.initialize_all_variables().run()
        tf.initialize_local_variables().run()
        threads = tf.train.start_queue_runners()

        # No randomness, so just see repeated copies of the input.
        output = dequeue_many.eval()
        self.assertAllEqual(strings * num_epochs, output)

        # Reached the limit.
        with self.assertRaises(tf.errors.OutOfRangeError):
            dequeue.eval()
        for thread in threads:
            thread.join()
util.py 文件源码 项目:DeepSEA 作者: momeara 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def initialize_session(sess, task_params):
    if task_params['verbose']:
        print("Initalizing tensorflow session ...")

    saver = tf.train.Saver()
    if task_params['restore_from_checkpoint']:
        saver.restore(
            sess=sess,
            save_path=task_params['save_path'])
        if task_params['verbose']:
            print("Restoring variables from '{}'".format(task_params['save_path']))
    else:
        sess.run(tf.initialize_all_variables())
        sess.run(tf.initialize_local_variables())

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    logdir=task_params['summaries_dir'] + '/train_' + time.strftime("%Y%m%d_%H-%M-%S")
    train_writer = tf.train.SummaryWriter(logdir=logdir, graph=sess.graph)

    summaries = tf.merge_all_summaries()


    return coord, threads, saver, train_writer, summaries


问题


面经


文章

微信
公众号

扫码关注公众号