python类strided_slice()的实例源码

utils.py 文件源码 项目:DeepLearning 作者: Wanwannodao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data  = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
        data_len  = tf.size(raw_data)
        batch_len = data_len // batch_size
        data      = tf.reshape(raw_data[0 : batch_size * batch_len],
                               [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps],
                             #tf.ones_like([0, i * num_steps]))
                             [1,1])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1],
                             #tf.ones_like([0, i * num_steps]))
                             [1,1])
        y.set_shape([batch_size, num_steps])
        return x, y
hm.py 文件源码 项目:holographic_memory 作者: jramapuram 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def decode(self, memories, keys, num_keys=None):
        keys = self._normalize(keys)
        num_memories = memories.get_shape().as_list()
        num_memories[0] = self.num_models if num_memories[0] is None else num_memories[0]
        num_keys = keys.get_shape().as_list()[0] if num_keys is None else num_keys
        print 'decode: numkeys = ', num_keys, ' | num_memories = ', num_memories

        # re-gather keys to avoid mixing between different keys.
        perms = self.perm_keys(keys, self.perms, num_keys=num_keys)
        pshp = perms.get_shape().as_list()
        pshp[0] = num_keys*self.num_models if pshp[0] is None else pshp[0]
        pshp[1] = num_memories[1] if pshp[1] is None else pshp[1]
        permed_keys = tf.concat(0, [tf.strided_slice(perms, [i, 0], pshp, [num_keys, 1])
                                    for i in range(num_keys)])
        print 'memories = ', num_memories, \
            '| dec_perms =', permed_keys.get_shape().as_list()
        return self.conv_func(memories, permed_keys,
                              num_memories[0],
                              self.num_models,
                              num_keys=num_keys*self.num_models,
                              conj=True)
train_nlm.py 文件源码 项目:Neural-Language-Model 作者: robosoup 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, cfg, data, name):
        self.steps = ((len(data) // cfg.batch_size) - 1) // cfg.num_steps
        with tf.name_scope(name, values=[data, cfg.batch_size, cfg.num_steps]):
            raw_data = tf.convert_to_tensor(data)
            data_len = tf.size(raw_data)
            batch_len = data_len // cfg.batch_size
            data = tf.reshape(raw_data[0: cfg.batch_size * batch_len], [cfg.batch_size, batch_len])
            epoch_size = (batch_len - 1) // cfg.num_steps
            epoch_size = tf.identity(epoch_size, name="epoch_size")
            i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

            begin_x = [0, i * cfg.num_steps]
            self.inputs = tf.strided_slice(
                data, begin_x, [cfg.batch_size, (i + 1) * cfg.num_steps], tf.ones_like(begin_x))
            self.inputs.set_shape([cfg.batch_size, cfg.num_steps])

            begin_y = [0, i * cfg.num_steps + 1]
            self.targets = tf.strided_slice(
                data, begin_y, [cfg.batch_size, (i + 1) * cfg.num_steps + 1], tf.ones_like(begin_y))
            self.targets.set_shape([cfg.batch_size, cfg.num_steps])
seq2seq_tf.py 文件源码 项目:PyTorchDemystified 作者: hhsecond 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def process_decoder_input(target_data, target_vocab_to_int, batch_size):
    # Take off the last column
    sliced = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
    # Append a column filled with <GO>
    decoder_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), sliced], 1)
    return decoder_input
fwgrad.py 文件源码 项目:tensorflow-forward-ad 作者: renmengye 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def StridedSlice_FwGrad(op, dx, dy, dz, du, _op_table=None, _grad_table=None):
  if dx is None:
    return None
  y = op.inputs[1]
  z = op.inputs[2]
  u = op.inputs[3]
  return tf.strided_slice(dx, begin=y, end=z, strides=u)


###############################################################################
# Element-wise operators. elemwise.
###############################################################################
process_inputs.py 文件源码 项目:language-translation-english-to-french 作者: Satyaki0924 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def process_decoding_input(target_data, target_vocab_to_int, batch_size):
        l_word = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
        return tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), l_word], 1)
layers.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
    """Normalizes the given input across the specified dimension to unit length.
    Note that the rank of `input` must be known.

    Args:
        inputs: A `Tensor` of arbitrary size.
        dim: The dimension along which the input is normalized.
        epsilon: A small value to add to the inputs to avoid dividing by zero.
        scope: Optional scope for variable_scope.

    Returns:
        The normalized `Tensor`.

    Raises:
        ValueError: If dim is larger than the number of dimensions in 'inputs'.
    """
    with tf.variable_scope(scope, 'UnitNorm', [inputs]):
        if not inputs.get_shape():
            raise ValueError('The input rank must be known.')
        input_rank = len(inputs.get_shape().as_list())
        if dim < 0 or dim >= input_rank:
            raise ValueError(
                'dim must be positive but smaller than the input rank.')

        lengths = tf.sqrt(
            epsilon + tf.reduce_sum(tf.square(inputs), dim, True))
        multiples = []
        if dim > 0:
            multiples.append(tf.ones([dim], tf.int32))
        multiples.append(tf.strided_slice(
            tf.shape(inputs), [dim], [dim + 1], [1]))
        if dim < (input_rank - 1):
            multiples.append(tf.ones([input_rank - 1 - dim], tf.int32))
        multiples = tf.concat(multiples, 0)
        return tf.div(inputs, tf.tile(lengths, multiples))
yolo_layers.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def call(self, data, mask=None):
        tmp1 = tf.strided_slice(data,[0,0,0,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp2 = tf.strided_slice(data,[0,0,0,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp3 = tf.strided_slice(data,[0,0,1,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp4 = tf.strided_slice(data,[0,0,1,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        if int(tf.__version__[0]) < 1:
            return tf.concat(1,[tmp1, tmp2, tmp3, tmp4])
        else:
            return tf.concat([tmp1, tmp2, tmp3, tmp4],1)
reader.py 文件源码 项目:Tensorflow_Learn 作者: jiangweisuc 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw PTB data.
    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.
    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).
    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.
    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0 : batch_size * batch_len],
                          [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1])
        y.set_shape([batch_size, num_steps])
        return x, y
yolo_layers.py 文件源码 项目:keras_zoo 作者: david-vazquez 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def call(self, data, mask=None):
        tmp1 = tf.strided_slice(data,[0,0,0,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp2 = tf.strided_slice(data,[0,0,0,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp3 = tf.strided_slice(data,[0,0,1,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp4 = tf.strided_slice(data,[0,0,1,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        if int(tf.__version__[0]) < 1:
            return tf.concat(1,[tmp1, tmp2, tmp3, tmp4])
        else:
            return tf.concat([tmp1, tmp2, tmp3, tmp4],1)
image_utils.py 文件源码 项目:magenta 作者: tensorflow 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _crop(image, offset_height, offset_width, crop_height, crop_width):
  """Crops the given image using the provided offsets and sizes.

  Note that the method doesn't assume we know the input image size but it does
  assume we know the input image rank.

  Args:
    image: an image of shape [height, width, channels].
    offset_height: a scalar tensor indicating the height offset.
    offset_width: a scalar tensor indicating the width offset.
    crop_height: the height of the cropped image.
    crop_width: the width of the cropped image.

  Returns:
    the cropped (and resized) image.

  Raises:
    InvalidArgumentError: if the rank is not 3 or if the image dimensions are
      less than the crop size.
  """
  original_shape = tf.shape(image)

  rank_assertion = tf.Assert(
      tf.equal(tf.rank(image), 3),
      ['Rank of image must be equal to 3.'])
  with tf.control_dependencies([rank_assertion]):
    cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]])

  size_assertion = tf.Assert(
      tf.logical_and(
          tf.greater_equal(original_shape[0], crop_height),
          tf.greater_equal(original_shape[1], crop_width)),
      ['Crop size greater than the image size.'])

  offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))

  # Use tf.strided_slice instead of crop_to_bounding box as it accepts tensors
  # to define the crop size.
  with tf.control_dependencies([size_assertion]):
    image = tf.strided_slice(image, offsets, offsets + cropped_shape,
                             strides=tf.ones_like(offsets))
  return tf.reshape(image, cropped_shape)
model_mp.py 文件源码 项目:MatchPyramid-TensorFlow 作者: pl8787 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __init__(self, config):
        self.config = config
        tf.reset_default_graph()
        self.X1 = tf.placeholder(tf.int32, name='X1', shape=(None, config['data1_maxlen']))
        self.X2 = tf.placeholder(tf.int32, name='X2', shape=(None, config['data2_maxlen']))
        self.X1_len = tf.placeholder(tf.int32, name='X1_len', shape=(None, ))
        self.X2_len = tf.placeholder(tf.int32, name='X2_len', shape=(None, ))
        self.Y = tf.placeholder(tf.int32, name='Y', shape=(None, ))
        self.F = tf.placeholder(tf.float32, name='F', shape=(None, config['feat_size']))

        self.dpool_index = tf.placeholder(tf.int32, name='dpool_index', shape=(None, config['data1_maxlen'], config['data2_maxlen'], 3))

        self.batch_size = tf.shape(self.X1)[0]

        self.embedding = tf.get_variable('embedding', initializer = config['embedding'], dtype=tf.float32, trainable=False)

        self.embed1 = tf.nn.embedding_lookup(self.embedding, self.X1)
        self.embed2 = tf.nn.embedding_lookup(self.embedding, self.X2)

        # batch_size * X1_maxlen * X2_maxlen
        self.cross = tf.einsum('abd,acd->abc', self.embed1, self.embed2)
        self.cross_img = tf.expand_dims(self.cross, 3)

        # convolution
        self.w1 = tf.get_variable('w1', initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.2, dtype=tf.float32) , dtype=tf.float32, shape=[2, 10, 1, 8])
        self.b1 = tf.get_variable('b1', initializer=tf.constant_initializer() , dtype=tf.float32, shape=[8])
        # batch_size * X1_maxlen * X2_maxlen * feat_out
        self.conv1 = tf.nn.relu(tf.nn.conv2d(self.cross_img, self.w1, [1, 1, 1, 1], "SAME") + self.b1)

        # dynamic pooling
        self.conv1_expand = tf.gather_nd(self.conv1, self.dpool_index)
        self.pool1 = tf.nn.max_pool(self.conv1_expand, 
                        [1, config['data1_maxlen'] / config['data1_psize'], config['data2_maxlen'] / config['data2_psize'], 1], 
                        [1, config['data1_maxlen'] / config['data1_psize'], config['data2_maxlen'] / config['data2_psize'], 1], "VALID")

        with tf.variable_scope('fc1'):
            self.fc1 = tf.nn.relu(tf.contrib.layers.linear(tf.reshape(self.pool1, [self.batch_size, config['data1_psize'] * config['data2_psize'] * 8]), 20))

        self.pred = tf.contrib.layers.linear(self.fc1, 1)

        pos = tf.strided_slice(self.pred, [0], [self.batch_size], [2])
        neg = tf.strided_slice(self.pred, [1], [self.batch_size], [2])

        self.loss = tf.reduce_mean(tf.maximum(1.0 + neg - pos, 0.0))

        self.train_model = tf.train.AdamOptimizer().minimize(self.loss)

        self.saver = tf.train.Saver(max_to_keep=20)
cifar10_input.py 文件源码 项目:deep_learning_study 作者: jowettcz 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
cifar10_input.py 文件源码 项目:deep_learning_study 作者: jowettcz 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
reader.py 文件源码 项目:YellowFin 作者: JianGoForIt 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
cifar10_input.py 文件源码 项目:MachineLearningTutorial 作者: SpikeKing 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
utils.py 文件源码 项目:DeepLearning 作者: Wanwannodao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def batch_producer(enc, dec, batch_size, name=None):
    data_len   = enc.shape[0]
    seq_len    = enc.shape[1]
    epoch_size = data_len // batch_size

    print("epoch size: %d " % epoch_size)

    with tf.name_scope(name, "batch", [enc, dec, batch_size]):
        enc = tf.convert_to_tensor(enc, name="enc", dtype=tf.float32)
        dec = tf.convert_to_tensor(dec, name="dec", dtype=tf.int32) 

        # generator 
        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

        x = tf.strided_slice(enc, [0, 0, 0],
                             [batch_size, seq_len, 2],
                             [1, 1, 1])
        x.set_shape([batch_size, seq_len, 2 ])

        y = tf.strided_slice(dec, [0, 0],
                             [batch_size, seq_len],
                             [1, 1])

        y.set_shape([batch_size, seq_len])

        return x, y

# for test

#if __name__ == "__main__":
#    enc_in, dec_out = _load_data("./convex_hull_50_train.txt")
#    print(enc_in.shape)
#    print(dec_out.shape)
#    #print(enc_in)
#    x_batch, y_batch = batch_producer(enc_in, dec_out, batch_size=20)

#    with tf.Session() as sess:
#        coord = tf.train.Coordinator()
#        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

#        print(sess.run([x_batch, y_batch]))

#        coord.request_stop()
#        coord.join(threads)


# ====================
# visualization
# ====================
cifar10_input.py 文件源码 项目:keras_experiments 作者: avolkov1 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
tf_queuing.py 文件源码 项目:adventures-in-ml-code 作者: adventuresinML 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_data(file_q):
    # Code from https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_input.py
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(file_q)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(
        tf.strided_slice(record_bytes, [label_bytes],
                         [label_bytes + image_bytes]),
        [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    reshaped_image = tf.cast(result.uint8image, tf.float32)

    height = 24
    width = 24

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           height, width)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(resized_image)

    # Set the shapes of tensors.
    float_image.set_shape([height, width, 3])
    result.label.set_shape([1])

    return float_image, result.label
cifar10_input.py 文件源码 项目:visual-interaction-networks_tensorflow 作者: jaesik817 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
reader.py 文件源码 项目:DeepLearningAndTensorflow 作者: azheng333 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw PTB data.

    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.

    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).

    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.

    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0: batch_size * batch_len],
                          [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1])
        y.set_shape([batch_size, num_steps])
        return x, y
cifar10_input.py 文件源码 项目:DeepLearningAndTensorflow 作者: azheng333 项目源码 文件源码 阅读 63 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
signals.py 文件源码 项目:nengo_dl 作者: nengo 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def gather(self, src, force_copy=False):
        """Fetches the data corresponding to ``src`` from the base array.

        Parameters
        ----------
        src : :class:`.TensorSignal`
            Signal indicating the data to be read from base array
        force_copy : bool, optional
            If True, always perform a gather, not a slice (this forces a
            copy). Note that setting ``force_copy=False`` does not guarantee
            that a copy won't be performed.

        Returns
        -------
        ``tf.Tensor``
            Tensor object corresponding to a dense subset of data from the
            base array
        """

        if src.tf_indices is None:
            raise BuildError("Indices for %s have not been loaded into "
                             "TensorFlow" % src)

        logger.debug("gather")
        logger.debug("src %s", src)
        logger.debug("indices %s", src.indices)
        logger.debug("src base %s", self.bases[src.key])

        var = self.bases[src.key]

        # we prefer to get the data via `strided_slice` or `identity` if
        # possible, as it is more efficient
        if force_copy or src.as_slice is None:
            result = tf.gather(var, src.tf_indices)
        elif (src.indices[0] == 0 and
              src.indices[-1] == var.get_shape()[0].value - 1 and
              len(src.indices) == var.get_shape()[0]):
            result = var
        else:
            result = tf.strided_slice(var, *src.as_slice)

        # for some reason the shape inference doesn't work in some cases
        result.set_shape(src.tf_indices.get_shape()[:1].concatenate(
            var.get_shape()[1:]))

        # reshape the data according to the shape set in `src`, if there is
        # one, otherwise keep the shape of the base array
        if result.get_shape() != src.full_shape:
            result = tf.reshape(result, src.tf_shape)
            result.set_shape(src.full_shape)

        # whenever we read from an array we use this to mark it as "read"
        # (so that any future writes to the array will be scheduled after
        # the read)
        self.mark_gather(src)

        return result
cifar10_input.py 文件源码 项目:pathnet 作者: jaesik817 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
reader.py 文件源码 项目:ran 作者: kentonl 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
resnet152_bn.py 文件源码 项目:self-supervision 作者: gustavla 项目源码 文件源码 阅读 86 收藏 0 点赞 0 评论 0
def resnet_atrous_conv(x, channels, size=3, padding='SAME', stride=1, hole=1, batch_norm=False,
         phase_test=None, activation=tf.nn.relu, name=None,
         parameter_name=None, bn_name=None, scale_name=None, summarize_scale=False, info=DummyDict(), parameters={},
         pre_adjust_batch_norm=False):
    if parameter_name is None:
        parameter_name = name
    if scale_name is None:
        scale_name = parameter_name
    with tf.name_scope(name):
        features = int(x.get_shape()[3])
        f = channels
        shape = [size, size, features, f]

        W_init, W_shape = _pretrained_resnet_conv_weights_initializer(parameter_name, parameters,
                                                          info=info.get('init'),
                                                          pre_adjust_batch_norm=pre_adjust_batch_norm,
                                                          bn_name=bn_name, scale_name=scale_name)
        b_init, b_shape = _pretrained_resnet_biases_initializer(scale_name, parameters,
                                                    info=info.get('init'),
                                                    pre_adjust_batch_norm=pre_adjust_batch_norm,
                                                    bn_name=bn_name)

        assert W_shape is None or tuple(W_shape) == tuple(shape), "Incorrect weights shape for {} (file: {}, spec: {})".format(name, W_shape, shape)
        assert b_shape is None or tuple(b_shape) == (f,), "Incorrect bias shape for {} (file: {}, spec; {})".format(name, b_shape, (f,))

        with tf.variable_scope(name):
            W = tf.get_variable('weights', shape, dtype=tf.float32,
                                initializer=W_init)
            b = tf.get_variable('biases', [f], dtype=tf.float32,
                                initializer=b_init)

        if hole == 1:
            raw_conv0 = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=padding)
        else:
            assert stride == 1
            raw_conv0 = tf.nn.atrous_conv2d(x, W, rate=hole, padding=padding)
        #conv0 = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding)
        if stride > 1:
            conv0 = tf.strided_slice(raw_conv0, [0, 0, 0, 0], raw_conv0.get_shape(), [1, stride, stride, 1])
        else:
            conv0 = raw_conv0
        h1 = tf.reshape(tf.nn.bias_add(conv0, b), conv0.get_shape())

        z = h1

    if activation is not None:
        z = activation(z)

    if info.get('scale_summary'):
        with tf.name_scope('activation'):
            tf.summary.scalar('activation/' + name, tf.sqrt(tf.reduce_mean(z**2)))

    info['activations'][name] = z
    return z
reader.py 文件源码 项目:gradual-learning-rnn 作者: zivaharoni 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0: batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
cifar10_input.py 文件源码 项目:tf-variational-dropout 作者: BayesWatch 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
reader.py 文件源码 项目:taas-examples 作者: caicloud 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
cifar10_input.py 文件源码 项目:TensorFlowOnSpark 作者: yahoo 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result


问题


面经


文章

微信
公众号

扫码关注公众号