python类norm()的实例源码

test_tensorboard_integration.py 文件源码 项目:jupyter_tensorboard 作者: lspvic 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def tf_logs(tmpdir_factory):

    import numpy as np
    import tensorflow as tf
    x = np.random.rand(5)
    y = 3 * x + 1 + 0.05 * np.random.rand(5)

    a = tf.Variable(0.1)
    b = tf.Variable(0.)
    err = a*x+b-y

    loss = tf.norm(err)
    tf.summary.scalar("loss", loss)
    tf.summary.scalar("a", a)
    tf.summary.scalar("b", b)
    merged = tf.summary.merge_all()

    optimizor = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

    with tf.Session() as sess:
        log_dir = tmpdir_factory.mktemp("logs", numbered=False)
        log_dir = str(log_dir)

        train_write = tf.summary.FileWriter(log_dir, sess.graph)
        tf.global_variables_initializer().run()
        for i in range(1000):
            _, merged_ = sess.run([optimizor, merged])
            train_write.add_summary(merged_, i)

    return log_dir
Bidirectionnet_GMM_softmaxloss.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_input(self):
        # positive
        self.raw_sentence= tf.placeholder(tf.float32, shape=[self.batch_size,18000],name='raw_sentence')
        self.sentence_emb =self.raw_sentence/tf.norm(self.raw_sentence,axis=-1,keep_dims=True) #tf.nn.embedding_lookup(tf.get_variable('word_embedding',[4096,512]),self.raw_sentence)
        self.image_feat = tf.placeholder(tf.float32,shape=[self.batch_size,4096], name='image_features')  
        self.image_feat_norm = self.image_feat/tf.norm(self.image_feat,axis=-1,keep_dims=True)
        self.sen_feat_norm = self.sentence_emb/tf.norm(self.sentence_emb,axis=-1,keep_dims=True)
        self.im_similarity = tf.matmul(self.image_feat_norm,self.image_feat_norm,transpose_b=True)
        self.sen_similarity =tf.matmul(self.sen_feat_norm,self.sen_feat_norm,transpose_b=True)
Bidirectionnet_GMM_better_topK.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_input(self):
        # positive
        self.raw_sentence= tf.placeholder(tf.float32, shape=[self.batch_size,18000],name='raw_sentence')
        self.sentence_emb =self.raw_sentence/tf.norm(self.raw_sentence,axis=-1,keep_dims=True) #tf.nn.embedding_lookup(tf.get_variable('word_embedding',[4096,512]),self.raw_sentence)
        self.image_feat = tf.placeholder(tf.float32,shape=[self.batch_size,4096], name='image_features')  
        self.image_feat_norm = self.image_feat/tf.norm(self.image_feat,axis=-1,keep_dims=True)
        self.sen_feat_norm = self.sentence_emb/tf.norm(self.sentence_emb,axis=-1,keep_dims=True)
        self.im_similarity = tf.matmul(self.image_feat_norm,self.image_feat_norm,transpose_b=True)
        self.sen_similarity =tf.matmul(self.sen_feat_norm,self.sen_feat_norm,transpose_b=True)
Bidirectionnet_GMM_better_topK.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def sentencenet(self, sentence_emb, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            sentence_fc1 =tf.nn.dropout(tf.contrib.layers.fully_connected(sentence_emb,2048, \
                                                            weights_regularizer=wd, scope='s_fc1'),keep_prob=self.keep_prob )# 20*10*256
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None,normalizer_fn=tf.contrib.layers.batch_norm,\
                                                             normalizer_params={'is_training':self.is_training,'updates_collections':None}, weights_regularizer=wd, scope='s_fc2')
            sentence_fc2 = sentence_fc2/tf.norm(sentence_fc2,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = sentence_fc2
        return sentence_fc2
Bidirectionnet_GMM_better_topK.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False,skip=False):
        if skip:
            return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.nn.dropout(tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1'),keep_prob=self.keep_prob)
            #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
            image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                        reuse=reuse, decay=0.999, updates_collections=None, 
                                                        scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed
BidirectionNet_conv_ltp.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def sentencenet(self, input_tensor, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)

            sentence_fc1 = tf.contrib.layers.fully_connected(input_tensor, 2048, weights_regularizer=wd, scope='s_fc1')
            #drop_fc1 = tf.nn.dropout(sentence_fc1, self.keep_prob, name='drop_fc1')
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None, weights_regularizer=wd, scope='s_fc2')
            sentence_fc2_bn = tf.contrib.layers.batch_norm(sentence_fc2, center=True, scale=True, is_training=self.is_training,
                                                           reuse=reuse, decay=0.999, updates_collections=None, 
                                                           scope='s_fc2_bn')
            embed = sentence_fc2_bn/tf.norm(sentence_fc2_bn,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = embed
        return embed
Bidirectionnet_GMM_norm.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def build_input(self):
        # positive
        self.raw_sentence= tf.placeholder(tf.float32, shape=[self.batch_size,18000],name='raw_sentence')
        self.sentence_emb =tf.sign(self.raw_sentence)*tf.pow(tf.abs(self.raw_sentence),0.5)/tf.norm(self.raw_sentence,axis=1,keep_dims=True) #tf.nn.embedding_lookup(tf.get_variable('word_embedding',[4096,512]),self.raw_sentence)
        self.image_feat = tf.placeholder(tf.float32,shape=[self.batch_size,4096], name='image_features')
Bidirectionnet_GMM_norm.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def sentencenet(self, sentence_emb, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            sentence_fc1 =tf.nn.dropout(tf.contrib.layers.fully_connected(sentence_emb,2048, \
                                                            weights_regularizer=wd, scope='s_fc1'),keep_prob=self.keep_prob) # 20*10*256
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None,normalizer_fn=tf.contrib.layers.batch_norm,\
                                                             normalizer_params={'is_training':self.is_training,'updates_collections':None}, weights_regularizer=wd, scope='s_fc2')
            sentence_fc2 = sentence_fc2/tf.norm(sentence_fc2,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = sentence_fc2
        return sentence_fc2
Bidirectionnet_GMM_norm.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False,skip=False):
        if skip:
            return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.nn.dropout(tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1'),keep_prob=self.keep_prob)
            #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
            image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                        reuse=reuse, decay=0.999, updates_collections=None, 
                                                        scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed
Bidirectionnet_GMM_full.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def sentencenet(self, sentence_emb, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            sentence_fc1 =tf.contrib.layers.fully_connected(sentence_emb,2048, \
                                                            weights_regularizer=wd, scope='s_fc1') # 20*10*256
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None,normalizer_fn=tf.contrib.layers.batch_norm,\
                                                             normalizer_params={'is_training':self.is_training,'updates_collections':None}, weights_regularizer=wd, scope='s_fc2')
            sentence_fc2 = sentence_fc2/tf.norm(sentence_fc2,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = sentence_fc2
        return sentence_fc2
Bidirectionnet_GMM_full.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False,skip=False):
        if skip:
            return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1')
            #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
            image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                        reuse=reuse, decay=0.999, updates_collections=None, 
                                                        scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed
Bidirectionnet_GMM_better_topK_9000feat.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sentencenet(self, sentence_emb, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            sentence_fc1 =tf.nn.dropout(tf.contrib.layers.fully_connected(sentence_emb,2048, \
                                                            weights_regularizer=wd, scope='s_fc1'),keep_prob=self.keep_prob )# 20*10*256
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None,normalizer_fn=tf.contrib.layers.batch_norm,\
                                                             normalizer_params={'is_training':self.is_training,'updates_collections':None}, weights_regularizer=wd, scope='s_fc2')
            sentence_fc2 = sentence_fc2/tf.norm(sentence_fc2,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = sentence_fc2
        return sentence_fc2
Bidirectionnet_GMM_better_topK_9000feat.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False,skip=False):
        if skip:
            return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.nn.dropout(tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1'),keep_prob=self.keep_prob)
            #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
            image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                        reuse=reuse, decay=0.999, updates_collections=None, 
                                                        scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed
Bidirectionnet_GMM9000feat_softmaxloss.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_input(self):
        # positive
        self.labels = tf.placeholder(tf.float32, shape=[None,self.num_class], name='concept_labels')
        self.raw_sentence= tf.placeholder(tf.float32, shape=[self.batch_size,9000],name='raw_sentence')
        self.sentence_emb =self.raw_sentence/tf.norm(self.raw_sentence,axis=-1,keep_dims=True) #tf.nn.embedding_lookup(tf.get_variable('word_embedding',[4096,512]),self.raw_sentence)
        self.image_feat = tf.placeholder(tf.float32,shape=[self.batch_size,4096], name='image_features')  
        self.image_feat_norm = self.image_feat/tf.norm(self.image_feat,axis=-1,keep_dims=True)
        self.sen_feat_norm = self.sentence_emb/tf.norm(self.sentence_emb,axis=-1,keep_dims=True)
        self.im_similarity = tf.matmul(self.image_feat_norm,self.image_feat_norm,transpose_b=True)
        self.sen_similarity =tf.matmul(self.sen_feat_norm,self.sen_feat_norm,transpose_b=True)
Bidirectionnet_GMM9000feat_softmaxloss.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def sentencenet(self, sentence_emb, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            sentence_fc1 =tf.nn.dropout(tf.contrib.layers.fully_connected(sentence_emb,2048, \
                                                            weights_regularizer=wd, scope='s_fc1'),keep_prob=self.keep_prob )# 20*10*256
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None,normalizer_fn=tf.contrib.layers.batch_norm,\
                                                             normalizer_params={'is_training':self.is_training,'updates_collections':None}, weights_regularizer=wd, scope='s_fc2')
            sentence_fc2 = sentence_fc2/tf.norm(sentence_fc2,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = sentence_fc2
        return sentence_fc2
Bidirectionnet_GMM_dataflow.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False,skip=False):
        if skip:
            return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1')
            #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
            image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                        reuse=reuse, decay=0.999, updates_collections=None, 
                                                        scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed
BidirectionNet_word2vec.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def sentencenet(self, input_tensor, reuse=False):
        with tf.variable_scope('sentence_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)

            #lstm_embed = self.lstm(input_tensor, reuse=reuse)
            sentence_fc1 = tf.contrib.layers.fully_connected(input_tensor, 2048, weights_regularizer=wd, scope='s_fc1')
        #drop_fc1 = tf.nn.dropout(sentence_fc1, self.keep_prob, name='drop_fc1')
            sentence_fc2 = tf.contrib.layers.fully_connected(sentence_fc1, 512,activation_fn=None, weights_regularizer=wd, scope='s_fc2')
        sentence_fc2_bn = tf.contrib.layers.batch_norm(sentence_fc2, center=True, scale=True, is_training=self.is_training,
                                                       reuse=reuse, decay=0.999, updates_collections=None, 
                                                       scope='s_fc2_bn')
            embed = sentence_fc2_bn/tf.norm(sentence_fc2_bn,axis= -1,keep_dims=True)
        self.endpoint['sentence_fc1'] = sentence_fc1
        self.endpoint['sentence_fc2'] = embed
        return embed
BidirectionNet_word2vec.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False, skip=False):
    if skip:
        return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1')
        #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
        image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                    reuse=reuse, decay=0.999, updates_collections=None, 
                                                    scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed
Bidirectionnet_cluster_tfidf.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def build_input(self):
        # positive
        self.raw_sentence= tf.placeholder(tf.float32, shape=[self.batch_size,1000],name='raw_sentence')
        self.sentence_emb =self.raw_sentence/(1e-12+tf.norm(self.raw_sentence,ord=2,axis=1,keep_dims=True)) #tf.nn.embedding_lookup(tf.get_variable('word_embedding',[4096,512]),self.raw_sentence)
        self.image_feat = tf.placeholder(tf.float32,shape=[self.batch_size,4096], name='image_features')
Bidirectionnet_cluster_tfidf.py 文件源码 项目:image-text-matching 作者: llltttppp 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def imagenet(self, image_feat, reuse=False,skip=False):
        if skip:
            return image_feat
        with tf.variable_scope('image_net', reuse=reuse) as scope:
            wd = tf.contrib.layers.l2_regularizer(self.weight_decay)
            image_fc1 = tf.nn.dropout(tf.contrib.layers.fully_connected(image_feat,2048, weights_regularizer=wd,scope='i_fc1'),keep_prob=self.keep_prob)
            #drop_fc1 = tf.nn.dropout(image_fc1, self.keep_prob, name='drop_fc1')
            image_fc2 = tf.contrib.layers.fully_connected(image_fc1, 512, activation_fn=None, weights_regularizer=wd, scope='i_fc2')
            image_fc2_bn = tf.contrib.layers.batch_norm(image_fc2, center=True, scale=True, is_training=self.is_training, 
                                                        reuse=reuse, decay=0.999, updates_collections=None, 
                                                        scope='i_fc2_bn')
            embed = image_fc2_bn / tf.norm(image_fc2_bn,axis=-1,keep_dims=True)
        self.endpoint['image_fc1'] = image_fc1
        self.endpoint['image_fc2'] = embed
        return embed


问题


面经


文章

微信
公众号

扫码关注公众号