python类cos()的实例源码

tf_utils.py 文件源码 项目:convolutional-pose-machines-tensorflow 作者: timctho 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def rotate_points(orig_points, angle, w, h):
    """Return rotated points

    Args:
        orig_points: 'Tensor' with shape [N,2], each entry is point (x,y)
        angle: rotate radians

    Returns:
        'Tensor' with shape [N,2], with rotated points
    """

    # rotation
    rotate_mat = tf.stack([[tf.cos(angle) / w, tf.sin(angle) / h],
                           [-tf.sin(angle) / w, tf.cos(angle) / h]])

    # shift coord
    orig_points = tf.subtract(orig_points, 0.5)

    orig_points = tf.stack([orig_points[:, 0] * w,
                            orig_points[:, 1] * h], axis=1)
    print(orig_points)
    rotated_points = tf.matmul(orig_points, rotate_mat) + 0.5

    return rotated_points
data_handler.py 文件源码 项目:tf-crnn 作者: solivr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def random_rotation(img: tf.Tensor, max_rotation: float=0.1, crop: bool=True) -> tf.Tensor:  # from SeguinBe
    with tf.name_scope('RandomRotation'):
        rotation = tf.random_uniform([], -max_rotation, max_rotation)
        rotated_image = tf.contrib.image.rotate(img, rotation, interpolation='BILINEAR')
        if crop:
            rotation = tf.abs(rotation)
            original_shape = tf.shape(rotated_image)[:2]
            h, w = original_shape[0], original_shape[1]
            # see https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders for formulae
            old_l, old_s = tf.cond(h > w, lambda: [h, w], lambda: [w, h])
            old_l, old_s = tf.cast(old_l, tf.float32), tf.cast(old_s, tf.float32)
            new_l = (old_l * tf.cos(rotation) - old_s * tf.sin(rotation)) / tf.cos(2*rotation)
            new_s = (old_s - tf.sin(rotation) * new_l) / tf.cos(rotation)
            new_h, new_w = tf.cond(h > w, lambda: [new_l, new_s], lambda: [new_s, new_l])
            new_h, new_w = tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32)
            bb_begin = tf.cast(tf.ceil((h-new_h)/2), tf.int32), tf.cast(tf.ceil((w-new_w)/2), tf.int32)
            rotated_image_crop = rotated_image[bb_begin[0]:h - bb_begin[0], bb_begin[1]:w - bb_begin[1], :]

            # If crop removes the entire image, keep the original image
            rotated_image = tf.cond(tf.equal(tf.size(rotated_image_crop), 0),
                                    true_fn=lambda: img,
                                    false_fn=lambda: rotated_image_crop)

        return rotated_image
input.py 文件源码 项目:DocumentSegmentation 作者: SeguinBe 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def rotate_crop(img, rotation, crop=True, interpolation='NEAREST'):
    with tf.name_scope('RotateCrop'):
        rotated_image = tf_rotate(img, rotation, interpolation)
        if crop:
            rotation = tf.abs(rotation)
            original_shape = tf.shape(rotated_image)[:2]
            h, w = original_shape[0], original_shape[1]
            # see https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders for formulae
            old_l, old_s = tf.cond(h > w, lambda: [h, w], lambda: [w, h])
            old_l, old_s = tf.cast(old_l, tf.float32), tf.cast(old_s, tf.float32)
            new_l = (old_l * tf.cos(rotation) - old_s * tf.sin(rotation)) / tf.cos(2 * rotation)
            new_s = (old_s - tf.sin(rotation) * new_l) / tf.cos(rotation)
            new_h, new_w = tf.cond(h > w, lambda: [new_l, new_s], lambda: [new_s, new_l])
            new_h, new_w = tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32)
            bb_begin = tf.cast(tf.ceil((h - new_h) / 2), tf.int32), tf.cast(tf.ceil((w - new_w) / 2), tf.int32)
            rotated_image_crop = rotated_image[bb_begin[0]:h - bb_begin[0], bb_begin[1]:w - bb_begin[1], :]

            # If crop removes the entire image, keep the original image
            rotated_image = tf.cond(tf.equal(tf.size(rotated_image_crop), 0),
                                    true_fn=lambda: img,
                                    false_fn=lambda: rotated_image_crop)
        return rotated_image
ColorHandPose3DNetwork.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_rot_mat(self, ux_b, uy_b, uz_b):
        """ Returns a rotation matrix from axis and (encoded) angle."""
        with tf.name_scope('get_rot_mat'):
            u_norm = tf.sqrt(tf.square(ux_b) + tf.square(uy_b) + tf.square(uz_b) + 1e-8)
            theta = u_norm

            # some tmp vars
            st_b = tf.sin(theta)
            ct_b = tf.cos(theta)
            one_ct_b = 1.0 - tf.cos(theta)

            st = st_b[:, 0]
            ct = ct_b[:, 0]
            one_ct = one_ct_b[:, 0]
            norm_fac = 1.0 / u_norm[:, 0]
            ux = ux_b[:, 0] * norm_fac
            uy = uy_b[:, 0] * norm_fac
            uz = uz_b[:, 0] * norm_fac

            trafo_matrix = self._stitch_mat_from_vecs([ct+ux*ux*one_ct, ux*uy*one_ct-uz*st, ux*uz*one_ct+uy*st,
                                                       uy*ux*one_ct+uz*st, ct+uy*uy*one_ct, uy*uz*one_ct-ux*st,
                                                       uz*ux*one_ct-uy*st, uz*uy*one_ct+ux*st, ct+uz*uz*one_ct])

            return trafo_matrix
PosePriorNetwork.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _get_rot_mat(self, ux_b, uy_b, uz_b):
        """ Returns a rotation matrix from axis and (encoded) angle."""
        with tf.name_scope('get_rot_mat'):
            u_norm = tf.sqrt(tf.square(ux_b) + tf.square(uy_b) + tf.square(uz_b) + 1e-8)
            theta = u_norm

            # some tmp vars
            st_b = tf.sin(theta)
            ct_b = tf.cos(theta)
            one_ct_b = 1.0 - tf.cos(theta)

            st = st_b[:, 0]
            ct = ct_b[:, 0]
            one_ct = one_ct_b[:, 0]
            norm_fac = 1.0 / u_norm[:, 0]
            ux = ux_b[:, 0] * norm_fac
            uy = uy_b[:, 0] * norm_fac
            uz = uz_b[:, 0] * norm_fac

            trafo_matrix = self._stitch_mat_from_vecs([ct+ux*ux*one_ct, ux*uy*one_ct-uz*st, ux*uz*one_ct+uy*st,
                                                       uy*ux*one_ct+uz*st, ct+uy*uy*one_ct, uy*uz*one_ct-ux*st,
                                                       uz*ux*one_ct-uy*st, uz*uy*one_ct+ux*st, ct+uz*uz*one_ct])

            return trafo_matrix
dizzyRNNCellv2.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def DizzyLayerV2(X, rot_list, n):
    n_prime = int(n*(n-1)/2)
    thetas = tf.Variable(tf.random_uniform([n_prime, 1], 0, 2*math.pi), name="thetas")

    results = [X]
    k = 0
    for sublist in rot_list:
        indices = []
        values = []
        for (a, b) in sublist:
            c = tf.cos(thetas[k])
            s = tf.sin(thetas[k])
            indices = indices + [[a, a], [a, b], [b, a], [b, b]]
            values = values + [c, s, -s, c]
            k += 1
        shape = [n, n]
        v = tf.pack(tf.squeeze(values))
        R = tf.SparseTensor(indices, v, shape)
        results.append(tf.sparse_tensor_dense_matmul(R, results[-1]))
    return results[-1]
dizzyRNNCellv1.py 文件源码 项目:dizzy_layer 作者: Pastromhaug 项目源码 文件源码 阅读 57 收藏 0 点赞 0 评论 0
def DizzyLayerV1(X, indices):
    n = int(X.get_shape()[0])
    n_prime = int(n*(n-1)/2)
    thetas = tf.Variable(tf.random_uniform([n_prime, 1], 0, 2*math.pi), name="thetas")
    X_split = [X[k, :] for k in range(n)]
    for k in range(n_prime):
        (a, b) = indices[k]
        theta = thetas[k]
        c = tf.cos(theta)
        s = tf.sin(theta)
        v_1 =  c*X_split[a]+s*X_split[b]
        v_2 = -s*X_split[a]+c*X_split[b]
        X_split[a] = v_1
        X_split[b] = v_2
    out = tf.pack(X_split)
    return out
common_layers.py 文件源码 项目:tensor2tensor 作者: tensorflow 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
cwt.py 文件源码 项目:cwt-tensorflow 作者: nickgeoca 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def mortletWavelet(scale, sampleCount):
    def waveEquation(time): 
        return tf.exp(-1. * time ** 2. / 2.) * tf.cos(5. * time) # https://www.mathworks.com/help/wavelet/ref/morlet.html

    return waveletHelper(scale, sampleCount, waveEquation)
tensorflow_backend.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def cos(x):
    '''Computes cos of x element-wise.
    '''
    return tf.cos(x)
activations.py 文件源码 项目:HyperGAN 作者: 255BITS 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def sin_and_cos(x, name="ignored"):
    return tf.concat(axis=len(x.get_shape()) - 1, values=[tf.sin(x), tf.cos(x)])
uniform_encoder.py 文件源码 项目:HyperGAN 作者: 255BITS 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def gaussian(config, gan, net):
    z_dim = int(config.z)
    net = (net + 1) / 2

    za = tf.slice(net, [0,0], [gan.batch_size(), z_dim//2])
    zb = tf.slice(net, [0,z_dim//2], [gan.batch_size(), z_dim//2])

    pi = np.pi
    ra = tf.sqrt(-2 * tf.log(za+TINY))*tf.cos(2*pi*zb)
    rb = tf.sqrt(-2 * tf.log(za+TINY))*tf.sin(2*pi*zb)

    return tf.reshape(tf.concat(axis=1, values=[ra, rb]), net.get_shape())
common.py 文件源码 项目:HyperGAN 作者: 255BITS 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, args):
        with tf.device(args.device):
            def circle(x):
                spherenet = tf.square(x)
                spherenet = tf.reduce_sum(spherenet, 1)
                lam = tf.sqrt(spherenet)
                return x/tf.reshape(lam,[int(lam.get_shape()[0]), 1])

            def modes(x):
                return tf.round(x*2)/2.0

            if args.distribution == 'circle':
                x = tf.random_normal([args.batch_size, 2])
                x = circle(x)
            elif args.distribution == 'modes':
                x = tf.random_uniform([args.batch_size, 2], -1, 1)
                x = modes(x)
            elif args.distribution == 'sin':
                x = tf.random_uniform((1, args.batch_size), -10.5, 10.5 )
                x = tf.transpose(x)
                r_data = tf.random_normal((args.batch_size,1), mean=0, stddev=0.1)
                xy = tf.sin(0.75*x)*7.0+x*0.5+r_data*1.0
                x = tf.concat([xy,x], 1)/16.0

            elif args.distribution == 'arch':
                offset1 = tf.random_uniform((1, args.batch_size), -10, 10 )
                xa = tf.random_uniform((1, 1), 1, 4 )
                xb = tf.random_uniform((1, 1), 1, 4 )
                x1 = tf.random_uniform((1, args.batch_size), -1, 1 )
                xcos = tf.cos(x1*np.pi + offset1)*xa
                xsin = tf.sin(x1*np.pi + offset1)*xb
                x = tf.transpose(tf.concat([xcos,xsin], 0))/16.0

            self.x = x
            self.xy = tf.zeros_like(self.x)
ae.py 文件源码 项目:magenta 作者: tensorflow 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def compute_mse_loss(x, xhat, hparams):
  """MSE loss function.

  Args:
    x: Input data tensor.
    xhat: Reconstruction tensor.
    hparams: Hyperparameters.

  Returns:
    total_loss: MSE loss scalar.
  """
  with tf.name_scope("Losses"):
    if hparams.raw_audio:
      total_loss = tf.reduce_mean((x - xhat)**2)
    else:
      # Magnitude
      m = x[:, :, :, 0] if hparams.cost_phase_mask else 1.0
      fm = utils.frequency_weighted_cost_mask(
          hparams.fw_loss_coeff,
          hz_flat=hparams.fw_loss_cutoff,
          n_fft=hparams.n_fft)
      mag_loss = tf.reduce_mean(fm * (x[:, :, :, 0] - xhat[:, :, :, 0])**2)
      if hparams.mag_only:
        total_loss = mag_loss
      else:
        # Phase
        if hparams.dphase:
          phase_loss = tf.reduce_mean(fm * m *
                                      (x[:, :, :, 1] - xhat[:, :, :, 1])**2)
        else:
          # Von Mises Distribution "Circular Normal"
          # Added constant to keep positive (Same Probability) range [0, 2]
          phase_loss = 1 - tf.reduce_mean(fm * m * tf.cos(
              (x[:, :, :, 1] - xhat[:, :, :, 1]) * np.pi))
        total_loss = mag_loss + hparams.phase_loss_coeff * phase_loss
        tf.summary.scalar("Loss/Mag", mag_loss)
        tf.summary.scalar("Loss/Phase", phase_loss)
    tf.summary.scalar("Loss/Total", total_loss)
  return total_loss
effects.py 文件源码 项目:py-noisemaker 作者: aayars 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def wormhole(tensor, shape, kink, input_stride, alpha=1.0):
    """
    Apply per-pixel field flow. Non-iterative.

    :param Tensor tensor:
    :param list[int] shape:
    :param float kink: Path twistiness
    :param float input_stride: Maximum pixel offset
    :return: Tensor
    """

    height, width, channels = shape

    values = value_map(tensor, shape)

    degrees = values * 360.0 * math.radians(1) * kink
    # stride = values * height * input_stride
    stride = height * input_stride

    x_index = tf.cast(row_index(shape), tf.float32)
    y_index = tf.cast(column_index(shape), tf.float32)

    x_offset = (tf.cos(degrees) + 1) * stride
    y_offset = (tf.sin(degrees) + 1) * stride

    x = tf.cast(x_index + x_offset, tf.int32) % width
    y = tf.cast(y_index + y_offset, tf.int32) % height

    luminosity = tf.square(tf.reshape(values, [height, width, 1]))

    out = normalize(tf.scatter_nd(offset_index(y, height, x, width), tensor * luminosity, tf.shape(tensor)))

    return blend(tensor, tf.sqrt(out), alpha)
effects.py 文件源码 项目:py-noisemaker 作者: aayars 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _cosine_components(a, b, g):
    # This guy is great http://paulbourke.net/miscellaneous/interpolation/

    g2 = (1 - tf.cos(g * math.pi)) / 2

    return a * (1 - g2), b * g2
ops.py 文件源码 项目:hyperchamber 作者: 255BITS 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def sin_and_cos(x, name="ignored"):
    return tf.concat(len(x.get_shape()) - 1, [tf.sin(x), tf.cos(x)])
layers.py 文件源码 项目:aboleth 作者: data61 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _transformation(self, XP):
        """Build the kernel feature space transformation."""
        real = tf.cos(XP)
        imag = tf.sin(XP)
        Net = tf.concat([real, imag], axis=-1) / np.sqrt(self.n_features)
        return Net
tensorflow_backend.py 文件源码 项目:keraflow 作者: ipod825 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cos(self, x):
        '''Computes cos of x element-wise.
        '''
        return tf.cos(x)
tensorflow_backend.py 文件源码 项目:deep-learning-keras-projects 作者: jasmeetsb 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def cos(x):
    """Computes cos of x element-wise.

    # Arguments
        x: input tensor.

    # Returns
        A tensor.
    """
    return tf.cos(x)
cwise_ops_cplx_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def testCplxCosGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpu(x, np.cos, tf.cos)
cwise_ops_cplx_test.py 文件源码 项目:complex_tf 作者: woodshop 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def testCplxCosGradGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpuGrad(x, np.cos, tf.cos)
poisson_models.py 文件源码 项目:spykes 作者: KordingLab 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def call(self, inputs):
        k1 = tf.matmul(tf.cos(inputs), self.k1 * tf.cos(self.mu))
        k2 = tf.matmul(tf.sin(inputs), self.k2 * tf.sin(self.mu))

        # Defines the two model formulations: "glm" vs "gvm".
        if self.model_type == 'glm':
            return tf.exp(k1 + k2 + self.k0)
        else:
            return tf.nn.softplus(self.b) + self.g * tf.exp(k1 + k2)
kernels.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def K(self, X, X2=None, presliced=False):
        if not presliced:
            X, X2 = self._slice(X, X2)
        r = self.euclid_dist(X, X2)
        return self.variance * tf.cos(r)
kernels.py 文件源码 项目:GPflow 作者: GPflow 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _J(self, theta):
        """
        Implements the order dependent family of functions defined in equations
        4 to 7 in the reference paper.
        """
        if self.order == 0:
            return np.pi - theta
        elif self.order == 1:
            return tf.sin(theta) + (np.pi - theta) * tf.cos(theta)
        elif self.order == 2:
            return 3. * tf.sin(theta) * tf.cos(theta) + \
                   (np.pi - theta) * (1. + 2. * tf.cos(theta) ** 2)
core_test.py 文件源码 项目:lsdc 作者: febert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, tf.abs, core.abs_function),
        ('neg', operator.neg, tf.neg, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, tf.sign, core.sign),
        ('reciprocal', None, tf.reciprocal, core.reciprocal),
        ('square', None, tf.square, core.square),
        ('round', None, tf.round, core.round_function),
        ('sqrt', None, tf.sqrt, core.sqrt),
        ('rsqrt', None, tf.rsqrt, core.rsqrt),
        ('log', None, tf.log, core.log),
        ('exp', None, tf.exp, core.exp),
        ('log', None, tf.log, core.log),
        ('ceil', None, tf.ceil, core.ceil),
        ('floor', None, tf.floor, core.floor),
        ('cos', None, tf.cos, core.cos),
        ('sin', None, tf.sin, core.sin),
        ('tan', None, tf.tan, core.tan),
        ('acos', None, tf.acos, core.acos),
        ('asin', None, tf.asin, core.asin),
        ('atan', None, tf.atan, core.atan),
        ('lgamma', None, tf.lgamma, core.lgamma),
        ('digamma', None, tf.digamma, core.digamma),
        ('erf', None, tf.erf, core.erf),
        ('erfc', None, tf.erfc, core.erfc),
        ('lgamma', None, tf.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        tf.cast(self.original_lt, tf.float32) / total_size,
        self.original_lt.axes)
tensorflow_backend.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def cos(x):
    '''Computes cos of x element-wise.
    '''
    return tf.cos(x)
complex_util.py 文件源码 项目:tensorflow_with_latest_papers 作者: NickShahML 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def get_unit_variable_c( name, scope, shape ):
    theta = tf.get_variable(name, shape=shape, initializer = tf.random_uniform_initializer(-pi,pi) )
    return tf.complex( tf.cos(theta), tf.sin(theta) )
ops.py 文件源码 项目:streetview 作者: ydnaandy123 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def sin_and_cos(x, name="ignored"):
    return tf.concat(len(x.get_shape()) - 1, [tf.sin(x), tf.cos(x)])
relative_trafo.py 文件源码 项目:hand3d 作者: lmb-freiburg 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_rot_mat_x_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords.  """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([one_vec, zero_vec, zero_vec, zero_vec,
                                          zero_vec, tf.cos(angle), -tf.sin(angle), zero_vec,
                                          zero_vec, tf.sin(angle), tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix


问题


面经


文章

微信
公众号

扫码关注公众号