def _jsma2_impl(model, x, yind, epochs, eps, clip_min, clip_max, score_fn):
def _cond(k, xadv):
return tf.less(k, epochs)
def _body(k, xadv):
ybar = model(xadv)
dy_dx = tf.gradients(ybar, xadv)[0]
# gradients of target w.r.t input
yt = tf.gather_nd(ybar, yind)
dt_dx = tf.gradients(yt, xadv)[0]
# gradients of non-targets w.r.t input
do_dx = dy_dx - dt_dx
c0 = tf.logical_or(eps < 0, xadv < clip_max)
c1 = tf.logical_or(eps > 0, xadv > clip_min)
cond = tf.reduce_all([dt_dx >= 0, do_dx <= 0, c0, c1], axis=0)
cond = tf.to_float(cond)
# saliency score for each pixel
score = cond * score_fn(dt_dx, do_dx)
shape = score.get_shape().as_list()
dim = _prod(shape[1:])
score = tf.reshape(score, [-1, dim])
a = tf.expand_dims(score, axis=1)
b = tf.expand_dims(score, axis=2)
score2 = tf.reshape(a + b, [-1, dim*dim])
ij = tf.argmax(score2, axis=1)
i = tf.to_int32(ij / dim)
j = tf.to_int32(ij) % dim
dxi = tf.one_hot(i, dim, on_value=eps, off_value=0.0)
dxj = tf.one_hot(j, dim, on_value=eps, off_value=0.0)
dx = tf.reshape(dxi + dxj, [-1] + shape[1:])
xadv = tf.stop_gradient(xadv + dx)
xadv = tf.clip_by_value(xadv, clip_min, clip_max)
return k+1, xadv
_, xadv = tf.while_loop(_cond, _body, (0, tf.identity(x)),
back_prop=False, name='_jsma2_batch')
return xadv
python类reduce_all()的实例源码
def split_proposals(proposals, proposals_num, gt, gt_num, iou, scores, cross_boundary_mask):
'''Generate batches from proposals and ground truth boxes
Idea is to drastically reduce number of proposals to evaluate. So, we find those
proposals that have IoU > 0.7 with _any_ ground truth and mark them as positive samples.
Proposals with IoU < 0.3 with _all_ ground truth boxes are considered negative. All
other proposals are discarded.
We generate batch with at most half of examples being positive. We also pad them with negative
have we not enough positive proposals.
proposals: N x 4 tensor
proposal_num: N
gt: M x 4 tensor
gt_num: M
iou: N x M tensor of IoU between every proposal and ground truth
scores: N x 2 tensor with scores object/not-object
cross_boundary_mask: N x 1 Tensor masking out-of-image proposals
'''
# now let's get rid of non-positive and non-negative samples
# Sample is considered positive if it has IoU > 0.7 with _any_ ground truth box
# XXX: maximal IoU ground truth proposal should be treated as positive
positive_mask = tf.reduce_any(tf.greater(iou, 0.7), axis=1) & cross_boundary_mask
# Sample would be considered negative if _all_ ground truch box
# have iou less than 0.3
negative_mask = tf.reduce_all(tf.less(iou, 0.3), axis=1) & cross_boundary_mask
# Select only positive boxes and their corresponding predicted scores
positive_boxes = tf.boolean_mask(proposals, positive_mask)
positive_scores = tf.boolean_mask(scores, positive_mask)
positive_labels = tf.reduce_mean(tf.ones_like(positive_scores), axis=1)
# Same for negative
negative_boxes = tf.boolean_mask(proposals, negative_mask)
negative_scores = tf.boolean_mask(scores, negative_mask)
negative_labels = tf.reduce_mean(tf.zeros_like(negative_scores), axis=1)
return (
(positive_boxes, positive_scores, positive_labels),
(negative_boxes, negative_scores, negative_labels)
)
def merge(tensors_list, mode, axis=1, name='merge', outputs_collections=None, **kwargs):
"""
Merge op
Args:
tensor_list: A list `Tensors` to merge
mode: str, available modes are
['concat', 'elemwise_sum', 'elemwise_mul', 'sum',
'mean', 'prod', 'max', 'min', 'and', 'or']
name: a optional scope/name of the layer
outputs_collections: The collections to which the outputs are added.
Returns:
A `Tensor` representing the results of the repetition operation.
Raises:
ValueError: If 'kernel_size' is not a 2-D list
"""
assert len(tensors_list) > 1, "Merge required 2 or more tensors."
with tf.name_scope(name):
tensors = [l for l in tensors_list]
if mode == 'concat':
output = tf.concat(tensors, axis=axis)
elif mode == 'elemwise_sum':
output = tensors[0]
for i in range(1, len(tensors)):
output = tf.add(output, tensors[i])
elif mode == 'elemwise_mul':
output = tensors[0]
for i in range(1, len(tensors)):
output = tf.multiply(output, tensors[i])
elif mode == 'sum':
output = tf.reduce_sum(tf.concat(tensors, axis=axis), axis=axis)
elif mode == 'mean':
output = tf.reduce_mean(tf.concat(tensors, axis=axis), axis=axis)
elif mode == 'prod':
output = tf.reduce_prod(tf.concat(tensors, axis=axis), axis=axis)
elif mode == 'max':
output = tf.reduce_max(tf.concat(tensors, axis=axis), axis=axis)
elif mode == 'min':
output = tf.reduce_min(tf.concat(tensors, axis=axis), axis=axis)
elif mode == 'and':
output = tf.reduce_all(tf.concat(tensors, axis=axis), axis=axis)
elif mode == 'or':
output = tf.reduce_any(tf.concat(tensors, axis=axis), axis=axis)
else:
raise Exception("Unknown merge mode", str(mode))
return _collect_named_outputs(outputs_collections, name, output)
return output
def next_inputs(self, time, outputs, state, sample_ids, name=None):
with tf.name_scope(name, "ScheduledOutputTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledOutputTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
def maybe_concatenate_auxiliary_inputs(outputs_, indices=None):
"""Concatenate outputs with auxiliary inputs, if they exist."""
if self._auxiliary_input_tas is None:
return outputs_
next_time = time + 1
auxiliary_inputs = nest.map_structure(
lambda ta: ta.read(next_time), self._auxiliary_input_tas)
if indices is not None:
auxiliary_inputs = tf.gather_nd(
auxiliary_inputs, indices)
return nest.map_structure(
lambda x, y: tf.concat((x, y), -1),
outputs_, auxiliary_inputs)
if self._next_input_layer is None:
return tf.where(
sample_ids, maybe_concatenate_auxiliary_inputs(outputs),
base_next_inputs)
where_sampling = tf.cast(
tf.where(sample_ids), tf.int32)
where_not_sampling = tf.cast(
tf.where(tf.logical_not(sample_ids)), tf.int32)
outputs_sampling = tf.gather_nd(outputs, where_sampling)
inputs_not_sampling = tf.gather_nd(base_next_inputs,
where_not_sampling)
sampled_next_inputs = maybe_concatenate_auxiliary_inputs(
self._next_input_layer(outputs_sampling), where_sampling)
base_shape = tf.shape(base_next_inputs)
return (tf.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ tf.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = tf.reduce_all(finished)
next_inputs = tf.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)
def decode(self, enc_outputs, enc_final_state):
with tf.variable_scope(self.decoder.scope):
def condition(time, all_outputs: tf.TensorArray, inputs, states):
def check_outputs_ends():
def has_end_word(t):
return tf.reduce_any(tf.equal(t, ANSWER_MAX))
output_label = tf.arg_max(all_outputs.stack(), 2)
output_label = tf.Print(output_label, [output_label], "Output Labels: ")
# The outputs are time-major, which means time is the first
# dimension. Here I need to check whether all the generated
# answers are ends with "</s>", so we need to transpose it
# to batch-major. Because `map_fn` only map function by the
# first dimension.
batch_major_outputs = tf.transpose(output_label, (1, 0))
all_outputs_ends = tf.reduce_all(tf.map_fn(has_end_word, batch_major_outputs, dtype=tf.bool))
return all_outputs_ends
# If the TensorArray has 0 size, stack() will trigger error,
# so I have to use condition function to check whether the
# size is 0.
all_ends = tf.cond(tf.equal(all_outputs.size(), 0),
lambda: tf.constant(False, tf.bool),
check_outputs_ends)
condition_result = tf.logical_and(tf.logical_not(all_ends), tf.less(time, ANSWER_MAX))
return condition_result
def body(time, all_outputs, inputs, state):
dec_outputs, dec_state, output_logits, next_input = self.decoder.step(inputs, state)
all_outputs = all_outputs.write(time, output_logits)
return time + 1, all_outputs, next_input, dec_state
output_ta = tensor_array_ops.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True,
element_shape=(None, config.DEC_VOCAB),
clear_after_read=False)
# with time-major data input, the batch size is the second dimension
batch_size = tf.shape(enc_outputs)[1]
zero_input = tf.ones(tf.expand_dims(batch_size, axis=0), dtype=tf.int32) * ANSWER_START
res = control_flow_ops.while_loop(
condition,
body,
loop_vars=[0, output_ta, self.decoder.zero_input(zero_input), enc_final_state],
)
final_outputs = res[1].stack()
final_outputs = tf.Print(final_outputs, [final_outputs], "Final Output: ")
final_state = res[3]
return final_outputs, final_state
def naive_decoder(cell, enc_states, targets, start_token, end_token,
feed_previous=True, training=True, scope='naive_decoder.0'):
init_state = enc_states[-1]
timesteps = tf.shape(enc_states)[0]
# targets time major
targets_tm = tf.transpose(targets, [1,0,2])
states = tf.TensorArray(dtype=tf.float32, size=timesteps+1, name='states',
clear_after_read=False)
outputs = tf.TensorArray(dtype=tf.float32, size=timesteps+1, name='outputs',
clear_after_read=False)
def step(i, states, outputs):
# run one step
# read from TensorArray (states)
state_prev = states.read(i)
if is_lstm(cell):
# previous state <tensor> -> <LSTMStateTuple>
c, h = tf.unstack(state_prev)
state_prev = rnn.LSTMStateTuple(c,h)
if feed_previous:
input_ = outputs.read(i)
else:
input_ = targets_tm[i]
output, state = cell(input_, state_prev)
# add state, output to list
states = states.write(i+1, state)
outputs = outputs.write(i+1, output)
i = tf.add(i,1)
return i, states, outputs
with tf.variable_scope(scope):
# initial state
states = states.write(0, init_state)
# initial input
outputs = outputs.write(0, start_token)
i = tf.constant(0)
# Stop loop condition
if training:
c = lambda x, y, z : tf.less(x, timesteps)
else:
c = lambda x, y, z : tf.reduce_all(tf.not_equal(tf.argmax(z.read(x), axis=-1),
end_token))
# body
b = lambda x, y, z : step(x, y, z)
# execution
_, fstates, foutputs = tf.while_loop(c,b, [i, states, outputs])
return foutputs.stack()[1:] # add states; but why?
def build_acquisition(self, Xcand):
outdim = tf.shape(self.data[1])[1]
num_cells = tf.shape(self.pareto.bounds.lb)[0]
N = tf.shape(Xcand)[0]
# Extended Pareto front
pf_ext = tf.concat([-np.inf * tf.ones([1, outdim], dtype=float_type), self.pareto.front, self.reference], 0)
# Predictions for candidates, concatenate columns
preds = [m.build_predict(Xcand) for m in self.models]
candidate_mean, candidate_var = (tf.concat(moment, 1) for moment in zip(*preds))
candidate_var = tf.maximum(candidate_var, stability) # avoid zeros
# Calculate the cdf's for all candidates for every predictive distribution in the data points
normal = tf.contrib.distributions.Normal(candidate_mean, tf.sqrt(candidate_var))
Phi = tf.transpose(normal.cdf(tf.expand_dims(pf_ext, 1)), [1, 0, 2]) # N x pf_ext_size x outdim
# tf.gather_nd indices for bound points
col_idx = tf.tile(tf.range(outdim), (num_cells,))
ub_idx = tf.stack((tf.reshape(self.pareto.bounds.ub, [-1]), col_idx), axis=1) # (num_cells*outdim x 2)
lb_idx = tf.stack((tf.reshape(self.pareto.bounds.lb, [-1]), col_idx), axis=1) # (num_cells*outdim x 2)
# Calculate PoI
P1 = tf.transpose(tf.gather_nd(tf.transpose(Phi, perm=[1, 2, 0]), ub_idx)) # N x num_cell*outdim
P2 = tf.transpose(tf.gather_nd(tf.transpose(Phi, perm=[1, 2, 0]), lb_idx)) # N x num_cell*outdim
P = tf.reshape(P1 - P2, [N, num_cells, outdim])
PoI = tf.reduce_sum(tf.reduce_prod(P, axis=2), axis=1, keep_dims=True) # N x 1
# Calculate Hypervolume contribution of points Y
ub_points = tf.reshape(tf.gather_nd(pf_ext, ub_idx), [num_cells, outdim])
lb_points = tf.reshape(tf.gather_nd(pf_ext, lb_idx), [num_cells, outdim])
splus_valid = tf.reduce_all(tf.tile(tf.expand_dims(ub_points, 1), [1, N, 1]) > candidate_mean,
axis=2) # num_cells x N
splus_idx = tf.expand_dims(tf.cast(splus_valid, dtype=float_type), -1) # num_cells x N x 1
splus_lb = tf.tile(tf.expand_dims(lb_points, 1), [1, N, 1]) # num_cells x N x outdim
splus_lb = tf.maximum(splus_lb, candidate_mean) # num_cells x N x outdim
splus_ub = tf.tile(tf.expand_dims(ub_points, 1), [1, N, 1]) # num_cells x N x outdim
splus = tf.concat([splus_idx, splus_ub - splus_lb], axis=2) # num_cells x N x (outdim+1)
Hv = tf.transpose(tf.reduce_sum(tf.reduce_prod(splus, axis=2), axis=0, keep_dims=True)) # N x 1
# return HvPoI
return tf.multiply(Hv, PoI)